Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
3 Biotech ; 12(10): 274, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36110566

RESUMEN

The superoxide dismutase (SOD) protein significantly influences the development and growth of plants and their reaction to abiotic stresses. However, little is known about the characteristics of rubber tree SOD genes and their expression changes under abiotic stresses. The present study recognized 11 SOD genes in the rubber tree genome, including 7 Cu/ZnSODs, 2 MnSODs, and 2 FeSODs. Except for HbFSD1, SODs were scattered on five chromosomes. The phylogenetic analysis of SOD proteins in rubber trees and a few other plants demonstrated that the SOD proteins contained three major subgroups. Moreover, the genes belonging to the same clade contained similar gene structures, which confirmed their classification further. The extension of the SOD gene family in the rubber tree was mainly induced by the segmental duplication events. The cis-acting components analysis showed that HbSODs were utilized in many biological procedures. The transcriptomics data indicated that the phosphorylation of the C-terminal domain of RNA polymerase II might control the cold response genes through the CBF pathway and activate the SOD system to respond to cold stress. The qRT-PCR results showed that the expression of HbCSD1 was significantly downregulated under drought and salt stresses, which might dominate the adaption capability to different stresses. Additionally, salt promoted the expression levels of HbMSD1 and HbMSD2, exhibiting their indispensable role in the salinity reaction. The study results will provide a theoretical basis for deep research on HbSODs in rubber trees. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03328-7.

2.
Braz. J. Pharm. Sci. (Online) ; 58: e191086, 2022. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1394042

RESUMEN

Abstract Fluoroquinolones are an important class of antimicrobial agents to manage infectious diseases. However, knowledge about how host bile acids are modified by fluoroquinolones is limited. We investigated and compared the impact of fluoroquinolones on circulating bile acid profiles and gut microbiota from in vivo studies. We administered ciprofloxacin (100 mg/kg/day) or moxifloxacin (40 mg/kg/day) orally to male Wistar rats for seven days. Fifteen bile acids (BAs) from the serum and large intestine were quantified by HPLC-MS/MS. The diversity of gut microbiota after ciprofloxacin and moxifloxacin treatment was analyzed using high-throughput, next-generation sequencing technology. The two fluoroquinolone-treated groups had different BA profiles. Ciprofloxacin significantly reduced the hydrophobicity index of the BA pool, reduced secondary BAs, and increased taurine-conjugated primary BAs in both the serum and large intestine as compared with moxifloxacin. Besides, ciprofloxacin treatment altered intestinal microbiota with a remarkable increase in Firmicutes to Bacteroidetes ratio, while moxifloxacin exerted no effect. What we found suggests that different fluoroquinolones have a distinct effect on the host BAs metabolism and intestinal bacteria, and therefore provide guidance on the selection of fluoroquinolones to treat infectious diseases.


Asunto(s)
Animales , Masculino , Ratas , Ácidos y Sales Biliares , Estudio Comparativo , Ciprofloxacina/análisis , Ratas Wistar , Microbioma Gastrointestinal , Moxifloxacino/análisis , Cromatografía Líquida de Alta Presión/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Hidrofóbicas e Hidrofílicas , Intestino Grueso/anomalías , Antiinfecciosos/farmacología
3.
Braz J Microbiol ; 51(1): 87-94, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31667800

RESUMEN

NADPH oxidases are enzymes that have been reported to generate reactive oxygen species (ROS) in animals, plants and many multicellular fungi in response to environmental stresses. Six genes of the NADPH oxidase complex components, including vvnoxa, vvnoxb, vvnoxr, vvbema, vvrac1 and vvcdc24, were identified based on the complete genomic sequence of the edible fungus Volvariella volvacea. The number of vvnoxa, vvrac1, vvbema and vvcdc24 transcripts fluctuated with ageing, and the gene expression patterns of vvnoxa, vvrac1 and vvbema were significantly positively correlated. However, the expression of vvnoxb and vvnoxr showed no significant difference during ageing. In hyphae subjected to mechanical injury stress, both O2- and H2O2 concentrations were increased. The expression of vvnoxa, vvrac1, vvbema and vvcdc24 was substantially upregulated, but vvnoxb and vvnoxr showed no response to mechanical injury stress at the transcriptional level. Additionally, the transcription of vvnoxa, vvrac1, vvbema and vvcdc24 could be repressed when the intracellular ROS were eliminated by diphenyleneiodonium (DPI) chloride and reduced glutathione (GSH) treatments. These results indicated a positive feedback loop involving NADPH oxidase and intracellular ROS, which might be the reason for the oxidative burst during injury stress.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Micelio/genética , NADPH Oxidasas/genética , Volvariella/enzimología , Volvariella/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Glutatión/farmacología , Micelio/enzimología , Compuestos Onio/farmacología , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Estallido Respiratorio , Estrés Fisiológico
4.
Genet Mol Biol ; 37(3): 508-17, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25249773

RESUMEN

Peptidoglycan recognition proteins (PGRPs) are innate immune molecules that have been structurally conserved throughout evolution in invertebrates and vertebrates. In this study, peptidoglycan recognition protein HcPGRP1 and its isoform HcPGRP1a were identified in the freshwater mussel Hyriopsis cumingii. The full-length cDNAs of HcPGRP1 (973 bp) and HcPGRP1a (537 bp) encoded polypeptides with 218 and 151 amino acids, respectively. Sequence analysis showed that HcPGRP1 had one C-terminal PGRP domain that was conserved throughout evolution. Phylogenetic analysis showed that HcPGRP1 clustered closely with EsPGRP4 of Euprymna scolopes. Real-time PCR showed that the mRNA transcripts of HcPGRP1 and HcPGRP1a were constitutively expressed in various tissues, with the highest level in hepatopancreas. Stimulation with lipopolysaccharide (LPS) and peptidoglycan (PGN) significantly up-regulated HcPGRP1 mRNA expression in hepatopancreas and foot, but not in gill, whereas HcPGRP1a expression was significantly up-regulated in all three tissues. Our results indicate that HcPGRP1 is both a constitutive and inducible protein that may be involved in immune responses (recognition and defense) against invaders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA