Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 89(2): 026107, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29495836

RESUMEN

An original technique for the measurement of charge signals from ionizing particle/radiation detectors has been implemented in an application-specific integrated circuit form. The device performs linear measurements of the charge both within and beyond its output voltage swing. The device features an unprecedented spectroscopic dynamic range of 102 dB and is suitable for high-resolution ion and X-γ ray spectroscopy. We believe that this approach may change a widespread paradigm according to which no high-resolution spectroscopy is possible when working close to or beyond the limit of the preamplifier's output voltage swing.

2.
Rev Sci Instrum ; 83(10): 104704, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126787

RESUMEN

An original low-noise large dynamic-range readout system for optical light spectroscopy with PIN diodes is presented. The front-end circuit is equipped with a smart device for automatic cancellation of the large dc offset brought about by the photodiode current. This device sinks away the exact amount of dc current from the preamplifier input, yielding auto zeroing of the output-voltage offset, while introducing the minimum electronic noise possible. As a result the measurement dynamic-range is maximized. Moreover, an auxiliary inspection point is provided which precisely tracks the dc component of the photodiode current. This output allows for precise beam alignment and may also be used for diagnostic purposes. The excellent gain stability and linearity make the circuit perfectly suited for optical-light pulse spectroscopy. Applications include particle sizing in the 100 nm range, two-dimensional characterization of semiconductor detectors, ultra-precise characterization of laser beam stability, confocal microscopy.

3.
Rev Sci Instrum ; 79(3): 036105, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18377050

RESUMEN

Using an innovative time-varying front-end electronics in conjunction with a bulky coaxial high-purity germanium detector, we were able to extend the range of the radionuclide spectra well beyond the analog to digital converter (ADC) saturation point. The electronics automatically conditions the signal for digital-filtering optimization if it is in the ADC voltage range and for time-over-threshold analysis if it exceeds the ADC range. A high spectroscopic resolution has been achieved in both operation ranges. An unprecedented wide energy range from 5 keV to 150 MeV of equivalent energy, or 90 dB, has been obtained using a single acquisition chain, while maintaining a high-energy resolution in the whole spectrum. For example, with an ADC range of 3 MeV a resolution has been obtained of 1.3/2.2 keV full width at half maximum on the 122/1332 keV gamma-ray lines of 57Co and 60Co, and of <0.4% in the time-over-threshold region, or for energy deposits beyond 3 MeV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA