Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38612726

RESUMEN

Medulloblastoma (MB) is a highly malignant childhood brain tumor. Group 3 MB (Gr3 MB) is considered to have the most metastatic potential, and tailored therapies for Gr3 MB are currently lacking. Gr3 MB is driven by PRUNE-1 amplification or overexpression. In this paper, we found that PRUNE-1 was transcriptionally regulated by lysine demethylase LSD1/KDM1A. This study aimed to investigate the therapeutic potential of inhibiting both PRUNE-1 and LSD1/KDM1A with the selective inhibitors AA7.1 and SP-2577, respectively. We found that the pharmacological inhibition had a substantial efficacy on targeting the metastatic axis driven by PRUNE-1 (PRUNE-1-OTX2-TGFß-PTEN) in Gr3 MB. Using RNA seq transcriptomic feature data in Gr3 MB primary cells, we provide evidence that the combination of AA7.1 and SP-2577 positively affects neuronal commitment, confirmed by glial fibrillary acidic protein (GFAP)-positive differentiation and the inhibition of the cytotoxic components of the tumor microenvironment and the epithelial-mesenchymal transition (EMT) by the down-regulation of N-Cadherin protein expression. We also identified an impairing action on the mitochondrial metabolism and, consequently, oxidative phosphorylation, thus depriving tumors cells of an important source of energy. Furthermore, by overlapping the genomic mutational signatures through WES sequence analyses with RNA seq transcriptomic feature data, we propose in this paper that the combination of these two small molecules can be used in a second-line treatment in advanced therapeutics against Gr3 MB. Our study demonstrates that the usage of PRUNE-1 and LSD1/KDM1A inhibitors in combination represents a novel therapeutic approach for these highly aggressive metastatic MB tumors.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Humanos , Niño , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Histona Demetilasas/genética , Epigénesis Genética , Microambiente Tumoral
2.
Artículo en Inglés | MEDLINE | ID: mdl-38180572

RESUMEN

We describe here the molecular basis of the complex formation of PRUNE1 with the tumor metastasis suppressors NME1 and NME2, two isoforms appertaining to the nucleoside diphosphate kinase (NDPK) enzyme family, and how this complex regulates signaling the immune system and energy metabolism, thereby shaping the tumor microenvironment (TME). Disrupting the interaction between NME1/2 and PRUNE1, as suggested, holds the potential to be an excellent therapeutic target for the treatment of cancer and the inhibition of metastasis dissemination. Furthermore, we postulate an interaction and regulation of the other Class I NME proteins, NME3 and NME4 proteins, with PRUNE1 and discuss potential functions. Class I NME1-4 proteins are NTP/NDP transphosphorylases required for balancing the intracellular pools of nucleotide diphosphates and triphosphates. They regulate different cellular functions by interacting with a large variety of other proteins, and in cancer and metastasis processes, they can exert pro- and anti-oncogenic properties depending on the cellular context. In this review, we therefore additionally discuss general aspects of class1 NME and PRUNE1 molecular structures as well as their posttranslational modifications and subcellular localization. The current knowledge on the contributions of PRUNE1 as well as NME proteins to signaling cascades is summarized with a special regard to cancer and metastasis.

3.
Front Genet ; 14: 1135404, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968588

RESUMEN

Medulloblastoma (MB) is a highly malignant childhood tumor of the cerebellum. Transcriptional and epigenetic signatures have classified MB into four molecular subgroups, further stratified into biologically different subtypes with distinct somatic copy-number aberrations, driver genes, epigenetic alterations, activated pathways, and clinical outcomes. The brain tumor microenvironment (BTME) is of importance to regulate a complex network of cells, including immune cells, involved in cancer progression in brain malignancies. MB was considered with a "cold" immunophenotype due to the low influx of immune cells across the blood brain barrier (BBB). Recently, this assumption has been reconsidered because of the identification of infiltrating immune cells showing immunosuppressive phenotypes in the BTME of MB tumors. Here, we are providing a comprehensive overview of the current status of epigenetics alterations occurring during cancer progression with a description of the genomic landscape of MB by focusing on immune cells within the BTME. We further describe how new immunotherapeutic approaches could influence concurring epigenetic mechanisms of the immunosuppressive cells in BTME. In conclusion, the modulation of these molecular genetic complexes in BTME during cancer progression might enhance the therapeutic benefit, thus firing new weapons to fight MB.

4.
Curr Microbiol ; 80(1): 53, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36583787

RESUMEN

The evolution and the development of the symptoms of Coronavirus disease 19 (COVID-19) are due to different factors, where the microbiome plays a relevant role. The possible relationships between the gut, lung, nasopharyngeal, and oral microbiome with COVID-19 have been investigated. We analyzed the nasal microbiome of both positive and negative SARS-CoV-2 individuals, showing differences in terms of bacterial composition in this niche of respiratory tract. The microbiota solution A (Arrow Diagnostics) was used to cover the hypervariable V1-V3 regions of the bacterial 16S rRNA gene. MicrobAT Suite and MicrobiomeAnalyst program were used to identify the operational taxonomic units (OTUs) and to perform the statistical analysis, respectively. The main taxa identified in nasal microbiome of COVID-19 patients and in Healthy Control subjects belonged to three distinct phyla: Proteobacteria (HC = 14%, Cov19 = 35.8%), Firmicutes (HC = 28.8%, Cov19 = 30.6%), and Actinobacteria (HC = 56.7%, Cov19 = 14.4%) with a relative abundance > 1% in all groups. A significant reduction of Actinobacteria in Cov19 group compared to controls (P < 0.001, FDR = 0.01) was found. The significant reduction of Actinobacteria was identified in all taxonomic levels down to the genus (P < 0.01) using the ANOVA test. Indeed, a significantly reduced relative abundance of Corynebacterium was found in the patients compared to healthy controls (P = 0.001). Reduced abundance of Corynebacterium has been widely associated with anosmia, a common symptom of COVID-19 as suffered from our patients. Contrastingly, the Corynebacterium genus was highly represented in the nasal mucosa of healthy subjects. Further investigations on larger cohorts are necessary to establish functional relationships between nasal microbiota content and clinical features of COVID-19.


Asunto(s)
Actinobacteria , COVID-19 , Microbiota , Humanos , Anosmia , ARN Ribosómico 16S/genética , SARS-CoV-2/genética , Bacterias/genética , Corynebacterium/genética , Actinobacteria/genética
5.
Front Mol Biosci ; 9: 975570, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225252

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which, since 2019 in China, has rapidly become a worldwide pandemic. The aggressiveness and global spread were enhanced by the many SARS-CoV-2 variants that have been isolated up to now. These mutations affect mostly the viral glycoprotein Spike (S), the capsid protein mainly involved in the early stages of viral entry processes, through the recognition of specific receptors on the host cell surface. In particular, the subunit S1 of the Spike glycoprotein contains the Receptor Binding Domain (RBD) and it is responsible for the interaction with the angiotensin-converting enzyme 2 (ACE2). Although ACE2 is the primary Spike host receptor currently studied, it has been demonstrated that SARS-CoV-2 is also able to infect cells expressing low levels of ACE2, indicating that the virus may have alternative receptors on the host cells. The identification of the alternative receptors can better elucidate the pathogenicity and the tropism of SARS-CoV-2. Therefore, we investigated the Spike S1 interactomes, starting from host membrane proteins of non-pulmonary cell lines, such as human kidney (HK-2), normal colon (NCM460D), and colorectal adenocarcinoma (Caco-2). We employed an affinity purification-mass spectrometry (AP-MS) to pull down, from the membrane protein extracts of all cell lines, the protein partners of the recombinant form of the Spike S1 domain. The purified interactors were identified by a shotgun proteomics approach. The lists of S1 potential interacting proteins were then clusterized according to cellular localization, biological processes, and pathways, highlighting new possible S1 intracellular functions, crucial not only for the entrance mechanisms but also for viral replication and propagation processes.

6.
Int J Mol Sci ; 23(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35628365

RESUMEN

The dramatic experience with SARS-CoV-2 has alerted the scientific community to be ready to face new epidemics/pandemics caused by new variants. Among the therapies against the pandemic SARS-CoV-2 virus, monoclonal Antibodies (mAbs) targeting the Spike glycoprotein have represented good drugs to interfere in the Spike/ Angiotensin Converting Enzyme-2 (ACE-2) interaction, preventing virus cell entry and subsequent infection, especially in patients with a defective immune system. We obtained, by an innovative phage display selection strategy, specific binders recognizing different epitopes of Spike. The novel human antibodies specifically bind to Spike-Receptor Binding Domain (RBD) in a nanomolar range and interfere in the interaction of Spike with the ACE-2 receptor. We report here that one of these mAbs, named D3, shows neutralizing activity for virus infection in cell cultures by different SARS-CoV-2 variants and retains the ability to recognize the Omicron-derived recombinant RBD differently from the antibodies Casirivimab or Imdevimab. Since anti-Spike mAbs, used individually, might be unable to block the virus cell entry especially in the case of resistant variants, we investigated the possibility to combine D3 with the antibody in clinical use Sotrovimab, and we found that they recognize distinct epitopes and show additive inhibitory effects on the interaction of Omicron-RBD with ACE-2 receptor. Thus, we propose to exploit these mAbs in combinatorial treatments to enhance their potential for both diagnostic and therapeutic applications in the current and future pandemic waves of coronavirus.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Anticuerpos Monoclonales , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Humanos , Glicoproteína de la Espiga del Coronavirus/química , Proteínas del Envoltorio Viral/química
7.
Genet Med ; 24(8): 1653-1663, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35511137

RESUMEN

PURPOSE: Emerging evidence suggest that infection-dependent hyperactivation of complement system (CS) may worsen COVID-19 outcome. We investigated the role of predicted high impact rare variants - referred as qualifying variants (QVs) - of CS genes in predisposing asymptomatic COVID-19 in elderly individuals, known to be more susceptible to severe disease. METHODS: Exploiting exome sequencing data and 56 CS genes, we performed a gene-based collapsing test between 164 asymptomatic subjects (aged ≥60 years) and 56,885 European individuals from the Genome Aggregation Database. We replicated this test comparing the same asymptomatic individuals with 147 hospitalized patients with COVID-19. RESULTS: We found an enrichment of QVs in 3 genes (MASP1, COLEC11, and COLEC10), which belong to the lectin pathway, in the asymptomatic cohort. Analyses of complement activity in serum showed decreased activity of lectin pathway in asymptomatic individuals with QVs. Finally, we found allelic variants associated with asymptomatic COVID-19 phenotype and with a decreased expression of MASP1, COLEC11, and COLEC10 in lung tissue. CONCLUSION: This study suggests that genetic rare variants can protect from severe COVID-19 by mitigating the activity of lectin pathway and prothrombin. The genetic data obtained through ES of 786 asymptomatic and 147 hospitalized individuals are publicly available at http://espocovid.ceinge.unina.it/.


Asunto(s)
COVID-19 , Anciano , COVID-19/genética , Colectinas/genética , Colectinas/metabolismo , Células Germinativas , Humanos , Lectinas/genética , SARS-CoV-2 , Secuenciación del Exoma
8.
Int J Mol Sci ; 23(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35456974

RESUMEN

Tracing the appearance and evolution of virus variants is essential in the management of the COVID-19 pandemic. Here, we focus on SARS-CoV-2 spread in Italian patients by using viral sequences deposited in public databases and a tracing procedure which is used to monitor the evolution of the pandemic and detect the spreading, within the infected population of emergent sub-clades with a potential positive selection. Analyses of a collection of monthly samples focused on Italy highlighted the appearance and evolution of all the main viral sub-trees emerging at the end of the first year of the pandemic. It also identified additional expanding subpopulations which spread during the second year (i.e., 2021). Three-dimensional (3D) modelling of the main amino acid changes in mutated viral proteins, including ORF1ab (nsp3, nsp4, 2'-o-ribose methyltransferase, nsp6, helicase, nsp12 [RdRp]), N, ORF3a, ORF8, and spike proteins, shows the potential of the analysed structural variations to result in epistatic modulation and positive/negative selection pressure. These analyzes will be of importance to the early identification of emerging clades, which can develop into new "variants of concern" (i.e., VOC). These analyses and settings will also help SARS-CoV-2 coronet genomic centers in other countries to trace emerging worldwide variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , Mutación , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
9.
Molecules ; 27(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35164139

RESUMEN

Butyrate is a major gut microbiome metabolite that regulates several defense mechanisms against infectious diseases. Alterations in the gut microbiome, leading to reduced butyrate production, have been reported in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A new butyrate releaser, useful for all the known applications of butyrate, presenting physiochemical characteristics suitable for easy oral administration, (N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA), has been recently developed. We investigated the protective action of FBA against SARS-CoV-2 infection in the human small intestine and enterocytes. Relevant aspects of SARS-CoV-2 infection were assessed: infectivity, host functional receptor angiotensin-converting enzyme-2 (ACE2), transmembrane protease serine 2 (TMPRSS2), neuropilin-1 (NRP1), pro-inflammatory cytokines expression, genes involved in the antiviral response and the activation of Nf-kB nuclear factor (erythroid-derived 2-like) 2 (Nfr2) pathways. We found that FBA positively modulates the crucial aspects of the infection in small intestinal biopsies and human enterocytes, reducing the expression of ACE2, TMPRSS2 and NRP1, pro-inflammatory cytokines interleukin (IL)-15, monocyte chemoattractant protein-1 (MCP-1) and TNF-α, and regulating several genes involved in antiviral pathways. FBA was also able to reduce the number of SARS-CoV-2-infected cells, and ACE2, TMPRSS2 and NRP1 expression. Lastly, through the inhibition of Nf-kB and the up-regulation of Nfr2, it was also able to reduce the expression of pro-inflammatory cytokines IL-15, MCP-1 and TNF-α in human enterocytes. The new butyrate releaser, FBA, exerts a preventive action against SARS-CoV-2 infection. It could be considered as an innovative strategy to limit COVID-19.


Asunto(s)
Butiratos/farmacología , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/metabolismo , Antivirales/farmacología , Butiratos/metabolismo , COVID-19/metabolismo , Células CACO-2 , Enterocitos/efectos de los fármacos , Enterocitos/metabolismo , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Humanos , Intestinos/efectos de los fármacos , Intestinos/metabolismo , Masculino , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad
10.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35216056

RESUMEN

The development of prophylactic agents against the SARS-CoV-2 virus is a public health priority in the search for new surrogate markers of active virus replication. Early detection markers are needed to follow disease progression and foresee patient negativization. Subgenomic RNA transcripts (with a focus on sgN) were evaluated in oro/nasopharyngeal swabs from COVID-19-affected patients with an analysis of 315 positive samples using qPCR technology. Cut-off Cq values for sgN (Cq < 33.15) and sgE (Cq < 34.06) showed correlations to high viral loads. The specific loss of sgN in home-isolated and hospitalized COVID-19-positive patients indicated negativization of patient condition, 3-7 days from the first swab, respectively. A new detection kit for sgN, gene E, gene ORF1ab, and gene RNAse P was developed recently. In addition, in vitro studies have shown that 2'-O-methyl antisense RNA (related to the sgN sequence) can impair SARS-CoV-2 N protein synthesis, viral replication, and syncytia formation in human cells (i.e., HEK-293T cells overexpressing ACE2) upon infection with VOC Alpha (B.1.1.7)-SARS-CoV-2 variant, defining the use that this procedure might have for future therapeutic actions against SARS-CoV-2.


Asunto(s)
COVID-19/virología , Proteínas de la Nucleocápside de Coronavirus/genética , SARS-CoV-2/fisiología , Replicación Viral/fisiología , Proteínas de la Nucleocápside de Coronavirus/análisis , Células Gigantes/efectos de los fármacos , Células Gigantes/virología , Células HEK293 , Humanos , Límite de Detección , Nasofaringe/virología , Fosfoproteínas/análisis , Fosfoproteínas/genética , ARN sin Sentido/farmacología , ARN Viral , Ribonucleasa P/genética , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Sensibilidad y Especificidad , Aislamiento Social , Carga Viral , Proteínas Viroporinas/genética , Replicación Viral/efectos de los fármacos
12.
ACS Omega ; 6(50): 34945-34953, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34926968

RESUMEN

Numerous reverse transcription polymerase chain reaction (RT-PCR) tests have emerged over the past year as the gold standard for detecting millions of cases of SARS-CoV-2 reported daily worldwide. However, problems with critical shortages of key reagents such as PCR primers and RNA extraction kits and unpredictable test reliability related to high viral replication cycles have triggered the need for alternative methodologies to PCR to detect specific COVID-19 proteins. Several authors have developed methods based on liquid chromatography with tandem mass spectrometry (LC-MS/MS) to confirm the potential of the technique to detect two major proteins, the spike and the nucleoprotein, of COVID-19. In the present work, an S-Trap mini spin column digestion protocol was used for sample preparation prodromal to LC-MS/MS analysis in multiple reactions monitoring ion mode (MRM) to obtain a comprehensive method capable of detecting different viral proteins. The developed method was applied to n. 81 oro/nasopharyngeal swabs submitted in parallel to quantitative reverse transcription PCR (RT-qPCR) assays to detect RdRP, the S and N genes specific for COVID-19, and the E gene for all Sarbecoviruses, including SARS-CoV-2 (with cycle negativity threshold set to 40). A total of 23 peptides representative of the six specific viral proteins were detected in the monitoring of 128 transitions found to have good ionic currents extracted in clinical samples that reacted differently to the PCR assay. The best instrumental response came from the FLPFQFGR sequence of spike [558-566] peptide used to test the analytical performance of the method that has good sensitivity with a low false-negative rate. Transition monitoring using a targeted MS approach has the great potential to detect the fragmentation reactions of any peptide molecularly defined by a specific amino acid sequence, offering the extensibility of the approach to any viral sequence including derived variants and thus providing insights into the development of new types of clinical diagnostics.

13.
Front Oncol ; 11: 758146, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745995

RESUMEN

We analyze the fundamental functions of Prune_1 in brain pathophysiology. We discuss the importance and maintenance of the function of Prune_1 and how its perturbation influences both brain pathological conditions, neurodevelopmental disorder with microcephaly, hypotonia, and variable brain anomalies (NMIHBA; OMIM: 617481), and tumorigenesis of medulloblastoma (MB) with functional correlations to other tumors. A therapeutic view underlying recent discoveries identified small molecules and cell penetrating peptides to impair the interaction of Prune_1 with protein partners (e.g., Nm23-H1), thus further impairing intracellular and extracellular signaling (i.e., canonical Wnt and TGF-ß pathways). Identifying the mechanism of action of Prune_1 as responsible for neurodevelopmental disorders (NDDs), we have recognized other genes which are found overexpressed in brain tumors (e.g., MB) with functional implications in neurodevelopmental processes, as mainly linked to changes in mitotic cell cycle processes. Thus, with Prune_1 being a significant target in NDDs, we discuss how its network of action can be dysregulated during brain development, thus generating cancer and metastatic dissemination.

14.
J Funct Foods ; 87: 104787, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34630633

RESUMEN

Fermented foods have been proposed in limiting SARS-CoV-2 infection. Emerging evidence suggest the efficacy of cow's milk fermented with the probiotic L. paracasei CBAL74 (FM-CBAL74) in preventing infectious diseases. We evaluated the protective action of FM-CBAL74 against SARS-CoV-2 infection in human enterocytes. Relevant aspects of SARS-CoV-2 infection were assessed: infectivity, host functional receptor angiotensin-converting enzyme-2 (ACE2), transmembrane protease serine 2 (TMPRSS2), and pro-inflammatory cytokines expression (IL-6, IL-15, IL-1ß, VEGFß, TNF-α, MCP-1, CXCL1). Pre-incubation with FM-CBA L74 reduced the number of infected cells. The expression of ACE2 and the pro-inflammatory cytokines IL-6, VEGFß, IL-15, IL-1ß was downregulated by the pre-treatment with this fermented food. No effect on TMPRSS2, MCP-1, TNF-α and CXCL1 expression was observed. Modulating the crucial aspects of the infection, the fermented food FM-CBAL74 exerts a preventive action against SARS-CoV-2. These evidence could pave the way to innovative nutritional strategy to mitigate the COVID-19.

15.
Genes (Basel) ; 12(6)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201032

RESUMEN

To identify host genetic determinants involved in humoral immunity and associated with the risk of developing severe COVID-19, we analyzed 500 SARS-CoV-2 positive subjects from Southern Italy. We examined the coding sequences of 10 common variable immunodeficiency-associated genes obtained by the whole-exome sequencing of 121 hospitalized patients. These 10 genes showed significant enrichment in predicted pathogenic point mutations in severe patients compared with the non-severe ones. Moreover, in the TNFRSF13C gene, the minor allele of the p.His159Tyr variant, which is known to increase NF-kB activation and B-cell production, was significantly more frequent in the 38 severe cases compared to both the 83 non-severe patients and the 375 asymptomatic subjects further genotyped. This finding identified a potential genetic risk factor of severe COVID-19 that not only may serve to unravel the mechanisms underlying the disease severity but, also, may contribute to build the rationale for individualized management based on B-cell therapy.


Asunto(s)
Receptor del Factor Activador de Células B/genética , COVID-19/etiología , COVID-19/genética , Femenino , Frecuencia de los Genes , Humanos , Italia , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Estudios Retrospectivos , Índice de Severidad de la Enfermedad
16.
Sci Signal ; 14(690)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230209

RESUMEN

Inorganic polyphosphates (polyPs) are linear polymers composed of repeated phosphate (PO4 3-) units linked together by multiple high-energy phosphoanhydride bonds. In addition to being a source of energy, polyPs have cytoprotective and antiviral activities. Here, we investigated the antiviral activities of long-chain polyPs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In molecular docking analyses, polyPs interacted with several conserved amino acid residues in angiotensin-converting enzyme 2 (ACE2), the host receptor that facilitates virus entry, and in viral RNA-dependent RNA polymerase (RdRp). ELISA and limited proteolysis assays using nano- LC-MS/MS mapped polyP120 binding to ACE2, and site-directed mutagenesis confirmed interactions between ACE2 and SARS-CoV-2 RdRp and identified the specific amino acid residues involved. PolyP120 enhanced the proteasomal degradation of both ACE2 and RdRp, thus impairing replication of the British B.1.1.7 SARS-CoV-2 variant. We thus tested polyPs for functional interactions with the virus in SARS-CoV-2-infected Vero E6 and Caco2 cells and in primary human nasal epithelial cells. Delivery of a nebulized form of polyP120 reduced the amounts of viral positive-sense genomic and subgenomic RNAs, of RNA transcripts encoding proinflammatory cytokines, and of viral structural proteins, thereby presenting SARS-CoV-2 infection in cells in vitro.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Polifosfatos/farmacología , SARS-CoV-2/efectos de los fármacos , Administración por Inhalación , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Antivirales/administración & dosificación , Antivirales/química , COVID-19/metabolismo , COVID-19/virología , Células CACO-2 , Chlorocebus aethiops , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Citocinas/metabolismo , Células HEK293 , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Técnicas In Vitro , Modelos Biológicos , Simulación del Acoplamiento Molecular , Nebulizadores y Vaporizadores , Polifosfatos/administración & dosificación , Polifosfatos/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteolisis/efectos de los fármacos , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Homología de Secuencia de Aminoácido , Transducción de Señal/efectos de los fármacos , Células Vero , Replicación Viral/efectos de los fármacos
17.
Int J Mol Sci ; 22(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065289

RESUMEN

Genome-wide association studies (GWAS) found locus 3p21.31 associated with severe COVID-19. CCR5 resides at the same locus and, given its known biological role in other infection diseases, we investigated if common noncoding and rare coding variants, affecting CCR5, can predispose to severe COVID-19. We combined single nucleotide polymorphisms (SNPs) that met the suggestive significance level (P ≤ 1 × 10-5) at the 3p21.31 locus in public GWAS datasets (6406 COVID-19 hospitalized patients and 902,088 controls) with gene expression data from 208 lung tissues, Hi-C, and Chip-seq data. Through whole exome sequencing (WES), we explored rare coding variants in 147 severe COVID-19 patients. We identified three SNPs (rs9845542, rs12639314, and rs35951367) associated with severe COVID-19 whose risk alleles correlated with low CCR5 expression in lung tissues. The rs35951367 resided in a CTFC binding site that interacts with CCR5 gene in lung tissues and was confirmed to be associated with severe COVID-19 in two independent datasets. We also identified a rare coding variant (rs34418657) associated with the risk of developing severe COVID-19. Our results suggest a biological role of CCR5 in the progression of COVID-19 as common and rare genetic variants can increase the risk of developing severe COVID-19 by affecting the functions of CCR5.


Asunto(s)
COVID-19/genética , COVID-19/metabolismo , Predisposición Genética a la Enfermedad , Receptores CCR5/genética , Receptores CCR5/metabolismo , Alelos , Bronquios/metabolismo , Bronquios/patología , Bronquios/virología , COVID-19/fisiopatología , Cromosomas Humanos/genética , Estudios de Cohortes , Biología Computacional , Bases de Datos Genéticas , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Polimorfismo de Nucleótido Simple , Secuenciación del Exoma
18.
Sci Rep ; 11(1): 11046, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34040046

RESUMEN

Among the therapies against the pandemic SARS-CoV-2 virus, monoclonal Antibodies (mAbs) targeting the Spike glycoprotein represent good candidates to interfere in the Spike/ACE2 interaction, preventing virus cell entry. Since anti-spike mAbs, used individually, might be unable to block the virus entry in the case of resistant mutations, we designed an innovative strategy for the isolation of multiple novel human scFvs specific for the binding domain (RBD) of Spike. By panning a large phage display antibody library on immobilized RBD, we obtained specific binders by eluting with ACE2 in order to identify those scFvs recognizing the epitope of Spike interacting with its receptor. We converted the novel scFvs into full size IgG4, differently from the previously isolated IgG1 mAbs, to avoid unwanted potential side effects of IgG1 potent effector functions on immune system. The novel antibodies specifically bind to RBD in a nanomolar range and interfere in the interaction of Spike with ACE2 receptor, either used as purified protein or when expressed on cells in its native conformation. Furthermore, some of them have neutralizing activity for virus infection in cell cultures by using two different SARS-CoV-2 isolates including the highly contagious VOC 202012/01 variant and could become useful therapeutic tools to fight against the SARS-CoV-2 virus.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , COVID-19/terapia , Inmunoglobulina G/metabolismo , Inmunoterapia/métodos , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Monoclonales , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Células Cultivadas , Epítopos , Humanos , Inmunoglobulina G/inmunología , Pandemias , Unión Proteica , Dominios Proteicos/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
19.
Oncogenesis ; 10(4): 34, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33931587

RESUMEN

The PI3K pathway is one of the most deregulated pathways in cancer, which is predominantly due to gain of function mutations or altered expression of the PI3KCA gene. This is codified by what is seen for the class I PI3K catalytic subunit p110α, a common feature of many cancers. The metastasis suppressor protein NM23-H1 (NME1), whose ability to suppress the metastasis activities of different tumors has been widely described and was previously reported to alter phosphatidylinositol signaling. Here, we show interaction of NM23-H1 with the p110α subunit and the functional consequence of this interaction. This interaction is predominantly localized at the plasma membrane with some signals seen in the cytoplasmic compartment. Analysis of NM23-H1 levels showed a negative correlation between NM23-H1 expression and Akt phosphorylation, the key marker of PI3K pathway activation. Investigating the functional consequence of this interaction using cell motility and clonogenicity assays showed that expression of NM23-H1 reversed the enhanced migration, invasion, adhesion, and filopodia structure formation in cells expressing the p110α catalytic subunit. A similar trend was seen in anchorage-independent assays. Notably, differential analyses using NM23-H1 mutants which lacked the enzymatic and metastasis suppressor activity, showed no detectable interaction between p110α and the NM23-H1 mutant proteins P96S, H118F, and S120G, as well as no dysregulation of the PI3K-AKT axis.

20.
Future Sci OA ; 7(4): FSO673, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33815819

RESUMEN

The Italian municipality of Ariano Irpino (Avellino, Campania, Italy) was locked down by the regional authorities from March until April 2020 after several citizens tested positive for SARS coronavirus 2 (SARS-CoV-2). A serological mass screening campaign targeting the Ariano Irpino population using the Roche Cobas Elecsys anti-SARS-CoV-2 assay was organized by the Zoo-Prophylactic Institute of Southern Italy (Portici, Italy) and conducted in cooperation with the Local Health Unit (Azienda Sanitaria Locale - ASL - Avellino, Avellino, Italy), the Department of Public Health of University Federico II (Naples, Italy) and Department of Health Services of Azienda Ospedaliera dei Colli-Cotugno and Monaldi Hospital (Naples, Italy) in May 2020. A total of 13,218 asymptomatic individuals were reviewed in this analysis. A total of 738 citizens tested positive for anti-SARS-CoV-2 antibodies (398 females, 340 males). The overall prevalence in the sample was 5.6% (95% CI: 5.2-6.0). Among seropositive citizens, 101 cases tested positive on RT-PCR (0.76% of the overall population). Among citizens aged 14-18, 18-65 and >65 years, the seroprevalence was equal to 6.1 (95% CI: 4.1-8.7), 5.6 (95% CI: 5.1-6.1) and 4% (95% CI: 3.3-4.8), respectively. In the pediatric cohort (<14 years old), seroprevalence was 13% (95% CI: 10.2-16.2). A serological-based screening strategy could be a cost-effective public health intervention to tackle the COVID-19 pandemic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...