Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1187144, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593742

RESUMEN

Interferon regulatory factor 8 (IRF8) is a key regulator of innate immune receptor signaling that resists pathogen invasion by regulating cell growth and differentiation. Porcine epidemic diarrhea virus (PEDV) targets the intestine and damages the mucosal barrier. However, whether IRF8 regulates PEDV replication remains unclear. We revealed that PEDV infection activated IRF8 expression. Moreover, IRF8 deletion drastically promoted PEDV replication and invasion, increasing the virus copies and titers. Hypomethylation enrichment of activating protein (AP)-2α was significantly negatively correlated with high IRF8 expression, and AP-2α directly targeted the IRF8 promoter to regulate PEDV replication. Furthermore, IRF8 overexpression decreased the cellular reactive oxygen species levels and mitochondrial membrane potential and increased the antioxidant enzyme activities to alleviate PEDV-induced oxidative damage. IRF8 overexpression suppressed apoptotic gene expression, thereby inhibiting apoptosis in response to PEDV stimulation. Taken together, this study demonstrates that AP-2α is involved in PEDV-induced epigenetic modification of IRF8 to reduce cell apoptosis and oxidative stress and facilitate host resistance to PEDV in the intestinal epithelium.


Asunto(s)
Virus de la Diarrea Epidémica Porcina , Porcinos , Animales , Virus de la Diarrea Epidémica Porcina/genética , Yeyuno , Factores Reguladores del Interferón , Apoptosis/genética
2.
J Agric Food Chem ; 71(27): 10427-10437, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37384814

RESUMEN

Mycotoxin-induced liver injury is often accompanied by oxidative stress (OS) and inflammation. This research aimed to explore the potential mechanism of sodium butyrate (NaBu) in modulating hepatic anti-oxidation and anti-inflammation pathways in deoxynivalenol (DON)-exposed piglets. The results show that DON induced liver injury, increased mononuclear cell infiltration, and decreased serum total protein and albumin concentrations. Transcriptomic analysis revealed that reactive oxygen species (ROS) and TNF-α pathways were highly activated upon DON exposure. This is associated with disturbed antioxidant enzymes and increased inflammatory cytokines secretion. Importantly, NaBu effectively reversed the alterations caused by DON. Mechanistically, the ChIP-seq result revealed that NaBu strongly depressed DON-increased enrichment of histone mark H3K27ac at the genes involved in ROS and TNF-α-mediated pathways. Notably, we demonstrated that nuclear receptor NR4A2 was activated by DON and remarkably recovered with the treatment of NaBu. In addition, the enhanced NR4A2 transcriptional binding enrichments at the promoter regions of OS and inflammatory genes were hindered by NaBu in DON-exposed livers. Consistently, elevated H3K9ac and H3K27ac occupancies were also observed at the NR4A2 binding regions. Taken together, our results indicated that a natural antimycotic additive, NaBu, could mitigate hepatic OS and inflammatory responses, possibly via NR4A2-mediated histone acetylation.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Histonas , Animales , Porcinos , Ácido Butírico/farmacología , Histonas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Acetilación , Factor de Necrosis Tumoral alfa/metabolismo , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Inflamación/genética
3.
J Agric Food Chem ; 71(21): 8182-8191, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37204101

RESUMEN

Deoxynivalenol (DON), one of the most common mycotoxins contaminating food and feed, has been shown to induce hepatotoxicity. Lactoferrin (LF) enriched in human milk is a critical functional food component and performs the hepatoprotection function. Here, we aimed to explore whether dietary LF supplementation can protect from DON-induced hepatotoxicity and uncover the underlying mechanism in mice and alpha mouse liver 12 (AML12) hepatocytes. In vivo results revealed that LF alleviated DON-induced liver injury, reflected by repairing the hepatic histomorphology and decreasing the plasma alanine aminotransferase (ALT) level and the number of blood white blood cells (WBC) and neutrophils (Neu). Moreover, LF decreased the hepatic reactive oxygen species (ROS) and malondialdehyde (MDA) accumulation and enhanced the hepatic GSH-px activity and protein expression of Nrf2 and GPX4 to reverse the DON-induced hepatic oxidative stress. Furthermore, LF downregulated the pro-inflammatory-response-related gene expressions (IL1ß, TNFα, and Tlr4) and the phosphorylation levels of IKK, IκBα, and p38 in the liver of DON-exposed mice. Additionally, in vitro studies confirmed that LF ameliorated the DON-induced oxidation-reduction imbalance, inflammatory responses, and associated core modulators of the Nrf2 and MAPK pathways in DON-induced hepatotoxicity. In conclusion, LF performs hepatic antioxidative and anti-inflammatory functions by regulating the Nrf2/MAPK signaling pathways, thus reducing DON-induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Factor 2 Relacionado con NF-E2 , Humanos , Ratones , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Lactoferrina/genética , Lactoferrina/metabolismo , Estrés Oxidativo , Hígado/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
4.
Antioxidants (Basel) ; 12(1)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36671014

RESUMEN

Deoxynivalenol (DON) is among the most prevalent contaminants in cereal crops and has been demonstrated to impair male spermatogenesis and induce oxidative stress, testicular apoptosis, and disruption of the blood-testis barrier (BTB). Lactoferrin (LF) is an iron-binding glycoprotein with multifunctions including anti-inflammation and antioxidation. Thus, this study aimed to investigate the effects of LF on the spermatogenesis and integrity of the BTB in DON-exposed mice. Thirty-two male mice were allotted to four groups for a 35-day feeding period: vehicle (basal diet), DON (12 mg/kg), LF (10 mg/d, p.o.), and DON + LF. The results showed that DON induced vacuolization of the spermatogenic epithelium, broke the adhesion junction between Sertoli cells and spermatids established by N-cadherin and induced testicular oxidative stress. LF administration restored sperm production, attenuated the DON-induced oxidative stress and reduced the breakages in adhesion junction. DON exposure enhanced the protein expression of occludin. Transcriptional profiling of the testis observed a disturbance in the expression profiles of cell adhesion and inflammatory response genes, and LF administration reversed these gene expressions. Furthermore, down-regulated signaling pathways, including the apical junction, TNFα signaling via NF-κB, and TGF-ß in the DON group were observed. These were restored by LF. Enrichment analysis between DON + LF group and vehicle also confirmed the absence of these pathways. These findings indicated that LF eliminated the DON-induced detriment to spermatogenesis and cell connections between Sertoli cells and spermatids via improving antioxidant capacity and modifying the inflammatory response and cell adhesion genes.

5.
J Anim Sci Biotechnol ; 13(1): 133, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36550531

RESUMEN

BACKGROUND: Cholesterol is an essential component of lipid rafts in cell plasma membrane, which exerts a hepatoprotective role against mycotoxin exposure in pigs, and cholesterol metabolism is vulnerable to epigenetic histone acetylation. Therefore, our present study aimed to investigate whether a histone deacetylase inhibitor (sodium butyrate [NaBu]) could protect the porcine liver from deoxynivalenol (DON) exposure by modulating cholesterol metabolism. Herein, we randomly divided 28 pigs into four groups, which were fed an uncontaminated basal diet, contaminated diet (4 mg DON/kg), uncontaminated diet supplemented with 0.2% NaBu or 4 mg/kg DON contaminated diet (4 mg DON/kg) supplemented with 0.2% NaBu for 28 d. RESULTS: We found that the serum alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) were all increased in pigs exposed to DON, indicative of significant liver injury. Furthermore, the cholesterol content in the serum of DON-exposed pigs was significantly reduced, compared to the healthy Vehicle group. Transcriptome analysis of porcine liver tissues revealed that the cholesterol homeostasis pathway was highly enriched due to DON exposure. In which we validated by qRT-PCR and western blotting that the cholesterol program was markedly activated. Importantly, NaBu effectively restored parameters associated with liver injury, along with the cholesterol content and the expression of key genes involved in the cholesterol biosynthesis pathway. Mechanistically, we performed a ChIP-seq analysis of H3K27ac and showed that NaBu strongly diminished DON-increased H3K27ac genome-wide enrichment. We further validated that the elevated H3K27ac and H3K9ac occupancies on cholesterol biosynthesis genes were both decreased by NaBu, as determined by ChIP-qPCR analysis. Notably, nuclear receptor RORγ, a novel regulator of cholesterol biosynthesis, was found in the hyperacetylated regions. Again, a remarkable increase of RORγ at both mRNA and protein levels in DON-exposed porcine livers was drastically reduced by NaBu. Consistent with RORγ expression, NaBu also hindered RORγ transcriptional binding enrichments on these activated cholesterol biosynthesis genes like HMGCR, SQLE, and DHCR24. Furthermore, we conducted an in vitro luciferase reporter assay to verify that porcine RORγ directly bonds to the promoters of the above target genes. CONCLUSIONS: Collectively, our results demonstrate the utility of the natural product NaBu as a potential anti-mycotoxin nutritional strategy for regulating cholesterol metabolism via RORγ-mediated histone acetylation modification.

6.
Front Immunol ; 13: 881289, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693767

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is an emerging coronavirus which causes acute diarrhea and destroys gastrointestinal barrier function in neonatal pigs. Trefoil factor 1 (TFF1) is a protective peptide for maintaining the integrity of gastrointestinal mucosa and reducing intestinal inflammation. However, its role in protecting intestinal epithelium against PEDV infection is still unclear. In this study, we discovered that TFF1 expression was activated in the jejunum of pigs with PEDV infection and TFF1 is required for the growth of porcine intestinal epithelial cells. For instance, inhibited cell proliferation and cell arrest were observed when TFF1 is genetically knocked-out using CRISPR-Cas9. Additionally, TFF1 depletion increased viral copy number and PEDV titer, along with the elevated genes involved in antiviral and inflammatory cytokines. The decreased TFF1 mRNA expression is in line with hypermethylation on the gene promoter. Notably, the strong interactions of protein-DNA complexes containing CCAAT motif significantly increased C/EBPα accessibility, whereas hypermethylation of mC-6 loci decreased C/EBPα binding occupancies in TFF1 promoter. Overall, our findings show that PEDV triggers the C/EBPα-mediated epigenetic regulation of TFF1 in intestine epithelium and facilitates host resistance to PEDV and other Coronavirus infections.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Virus de la Diarrea Epidémica Porcina , Animales , Proteína alfa Potenciadora de Unión a CCAAT , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/veterinaria , Epigénesis Genética , Inflamación/genética , Yeyuno , Metilación , Virus de la Diarrea Epidémica Porcina/genética , Porcinos , Factor Trefoil-1/genética
7.
Liver Int ; 42(6): 1449-1466, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35184357

RESUMEN

BACKGROUND & AIMS: Disruption of lipid metabolism is largely linked to metabolic disorders, such as hypercholesterolemia (HCL) and liver steatosis. While cholesterol metabolic re-programmers can serve as targets for relevant interventions. Here we explored the dietary conjugated linoleic acids (CLA)-induced HCL in mice and the molecular regulation behind it. METHODS: A high dose of CLA supplementation in the diet was used to induce HCL in mice and was found to cause a hyper-activated cholesterol biosynthesis programme in the liver, leading to cholesterol metabolism dysregulation. The effects of a small-molecule drug targeting PPARα, i.e., GW6471 were studied in vivo in mice fed diets with CLA supplementation for 28 days, and in primary hepatocytes derived from HCL-mice in vitro. RESULTS: We demonstrate that CLA induced HCL and liver steatosis through multiple pathways. Among which was the PPARα-mediated cholesterogenesis. It was found to cooperate with SREBP2 via binding to Hmgcr and Dhcr7 (genes encoding key enzymes of the cholesterol biosynthetic pathway) and recruits the histone marks H3K27ac and H3K4me1 and cofactors. PPARα inhibition disrupts its physical association with SREBP2 by blocking cobinding of PPARα and SREBP2 to the genomic DNA response element. We showed that NR RORγ functions as an essential mediator that facilitates the interaction of PPARα and SREBP2 to modulate the cholesterol biosynthesis genes expression. CONCLUSIONS: Our study unravels that the small-molecule compound GW6471 exerts an attractive therapeutic effect for CLA-induced HCL, involving multiple pathways with the "PPARα-RORγ-SREBP2" being a potential complex player in this hepatic cholesterol biosynthesis programming.


Asunto(s)
Hígado Graso , Hipercolesterolemia , Hiperlipidemias , Ácidos Linoleicos Conjugados , Animales , Colesterol/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Humanos , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linoleicos Conjugados/farmacología , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , PPAR alfa
8.
J Nutr ; 152(11): 2451-2460, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774111

RESUMEN

BACKGROUND: Deoxynivalenol (DON) is a major mycotoxin present in staple foods (particularly in cereal products) that induces intestinal inflammation and disrupts intestinal integrity. Lactoferrin (LF) is a multifunctional protein that contributes to maintaining intestinal homeostasis and improving host health. However, the protective effects of LF on DON-induced intestinal dysfunction remain unclear. OBJECTIVES: This study aimed to investigate the effects of LF on DON-induced intestinal dysfunction in mice, and its underlying protective mechanism. METHODS: Male BALB/c mice (5 wk old) with similar body weights were divided into 4 groups (n = 6/group) and treated as follows for 5 wk: Veh [peroral vehicle daily, commercial (C) diet]; LF (peroral 10 mg LF/d, C diet); DON (Veh, C diet containing 12 mg DON/kg); and LF + DON (peroral 10 mg LF/d, DON diet). Intestinal morphology, tight junction proteins, cytokines, and microbial community were determined. Data were analyzed by 2-factor ANOVA or Kruskal-Wallis test. RESULTS: The DON group exhibited lower final body weight (-12%), jejunal villus height (VH; -41%), and jejunal occludin expression (-36%), and higher plasma IL-1ß concentration (+85%) and jejunal Il1b mRNA expression (+98%) compared with the Veh group (P < 0.05). In contrast, final body weight (+19%), jejunal VH (+49%), jejunal occludin (+53%), and intelectin 1 protein expression (+159%) were greater in LF + DON compared with DON (P < 0.05). Additionally, jejunal Il1b mRNA expression (-31%) and phosphorylation of p38 and extracellular signal regulated kinase 1/2 (-40% and - 38%) were lower in LF + DON compared with DON (P < 0.05). Furthermore, the relative abundance of Clostridium XIVa (+181%) and colonic butyrate concentration (+53%) were greater in LF + DON compared with DON (P < 0.05). CONCLUSIONS: Our study highlights a promising antimycotoxin approach using LF to alleviate DON-induced intestinal dysfunction by modulating the mitogen-activated protein kinase pathway and gut microbial community in mice.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Intestinales , Sistema de Señalización de MAP Quinasas , Tricotecenos , Animales , Masculino , Ratones , Inflamación/inducido químicamente , Lactoferrina/farmacología , Ocludina/genética , ARN Mensajero , Tricotecenos/toxicidad
9.
Front Immunol ; 13: 1101643, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685553

RESUMEN

The serum level of cholesterol and its biosynthetic intermediates are critical indicators to access metabolism-related disorders in humans and animals. However, the molecular actions of these intermediates on gene functions and regulation remained elusive. Here, we show that desmosterol (DES) is the most abundant intermediate involved in cholesterol biosynthesis and is highly enriched in red/brown algae. It exerts a pivotal role in modulating core genes involved in oxidative stress and inflammatory response processes in the ileum epithelial cells (IPI-2I). We observed that the DES extracted from red algae did not affect IPI-2I cell growth or survival. A transcriptomic measurement revealed that the genes enrolled in the oxidative process and cholesterol homeostasis pathway were significantly down-regulated by DES treatment. Consistent with this notion, cellular reactive oxygen species (ROS) levels were markedly decreased in response to DES treatment. In contrast, key inflammatory genes including IL-6, TNF-α, and IFN-γ were remarkably upregulated in the RNA-seq analysis, as further confirmed by qRT-PCR. Given that DES is a specific agonist of nuclear receptor RORγ, we also found that DES caused the elevated expression of RORγ at mRNA and protein levels, suggesting it is a potential mediator under DES administration. Together, these results underscore the vital physiological actions of DES in inflammatory and oxidative processes possibly via RORγ, and may be helpful in anti-oxidation treatment and immunotherapy in the future.


Asunto(s)
Productos Biológicos , Algas Marinas , Humanos , Animales , Desmosterol/metabolismo , Algas Marinas/metabolismo , Colesterol/metabolismo , Estrés Oxidativo , Células Epiteliales/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo
10.
Front Nutr ; 8: 760443, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604289

RESUMEN

[This corrects the article DOI: 10.3389/fnut.2021.690073.].

11.
Front Nutr ; 8: 690073, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422881

RESUMEN

Inflammatory bowel disease (IBD) is a recurrent chronic inflammatory condition of the intestine without any efficient therapeutic regimens. Gut microbiota, which plays an instrumental role in the development and maturation of the immune system, has been implicated in the pathogenesis of IBD. Emerging evidence has established that early-life events particularly maternal influences and antibiotic treatment are strongly correlated with the health or susceptibility to disease of an individual in later life. Thus, it is proposed that there is a critical period in infancy, during which the environmental exposures bestow a long-term pathophysiological imprint. This notion sheds new light on the development of novel approaches for the treatment, i.e., early interventions, more precisely, the prevention of many uncurable chronic inflammatory diseases like IBD. In this review, we have integrated current evidence to describe the feasibility of the "able-to-be-regulated microbiota," summarized the underlying mechanisms of the "microbiota-driven immune system education," explored the optimal intervention time window, and discussed the potential of designing early-probiotic treatment as a new prevention strategy for IBD.

12.
Gene ; 773: 145415, 2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33444678

RESUMEN

Heat shock protein 27 (HSP27) plays an important role in protecting cells from various stress factors. This study aimed to investigate the function of HSP27 gene and its regulatory mechanism as infected by Escherichia coli (E. coli) at the tissue and cellular levels. Real-time PCR was used to detect the differential expression of HSP27 gene in F18 resistant and sensitive Sutai pigs and the differential expression upon E. coli F18ab, F18ac, K88ac bacterial supernatant, thallus infection and LPS induction in IPEC-J2. In addition, the HSP27 gene overexpression vector was constructed to detect the effect of the HSP27 gene overexpression on the adhesion of E. coli F18 to IPEC-J2, secretion of pro-inflammatory factors, and the expression of the upstream key genes in Mitogen-activated protein kinase (MAPK) pathway. Ribosomal S6 kinase (RSK2) is an important protein in the MAPK pathway. Therefore, the RSK2 gene overexpression vector was constructed and the number of colonies was counted after co-transfection of HSP27 and RSK2 gene. Results revealed that the expression level of HSP27 gene in resistant individuals in 11 tissues was higher than sensitive type. At the cellular level, the relative expression levels of HSP27 gene were increased after F18ab, F18ac bacterial supernatant, F18ab thallus infection, and LPS induction for 4 h (P < 0.01). The adhesion ability of E. coli F18ab to IPEC-J2 was significantly reduced after HSP27 gene overexpression (P < 0.01), and the concentration of pro-inflammatory factors in the HSP27 gene overexpression group was significantly reduced compared with the control group after F18ab infection (P < 0.05). Furthermore, the expression of RSK2 was significantly increased in HSP27 overexpression group upon F18ab infection (P < 0.01). The colonies quantitative results also showed that the number of colonies was significantly reduced after co-transfection of HSP27 and RSK2 gene. We indicated that the high expression of HSP27 gene may resist the inflammatory response caused by exogenous stress and enhance the ability of IPEC-J2 to resist E. coli F18 infection. RSK2 gene in the MAPK pathway may cooperate with HSP27 gene to participate in the immune response of the organism, which provides a theoretical basis for the study of the mechanism of anti-E. coli infection in piglets.


Asunto(s)
Resistencia a la Enfermedad/genética , Infecciones por Escherichia coli/genética , Escherichia coli/genética , Proteínas de Choque Térmico HSP27/genética , Animales , Adhesión Bacteriana/genética , Diarrea/genética , Diarrea/microbiología , Diarrea/veterinaria , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Proteínas de Escherichia coli/genética , Regulación de la Expresión Génica/genética , Porcinos/genética , Porcinos/microbiología , Enfermedades de los Porcinos/genética , Enfermedades de los Porcinos/microbiología
13.
J Agric Food Chem ; 67(22): 6423-6431, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31013075

RESUMEN

Deoxynivalenol (DON) is a type of mycotoxin that is disruptive to intestinal and immune systems. To better understand the molecular effects of DON exposure, we performed genome-wide comparisons of DNA methylation and gene expression from porcine intestinal epithelial cell IPEC-J2 upon DON exposure using reduced representation bisulfite sequencing and RNA-seq technologies. We characterized the methylation pattern changes and found 3030 differentially methylated regions. Moreover, 3226 genes showing differential expression were enriched in pathways of protein and nucleic acid synthesis and ribosome biogenesis. Integrative analysis identified 29 genes showing inverse correlations between promoter methylation and expression. Altered DNA methylation and expression of various genes suggested their roles and potential functional interactions upon DON exposure. Our data provided new insights into epigenetic and transcriptomic alterations of intestinal epithelial cells upon DON exposure and may advance the identification of biomarkers and drug targets for predicting and controlling the toxic effects of this common mycotoxin.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Intestinos/química , Porcinos/genética , Tricotecenos/toxicidad , Animales , Metilación de ADN/efectos de los fármacos , Células Epiteliales/química , Células Epiteliales/citología , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Genoma , Mucosa Intestinal/química , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Porcinos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...