Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202401240, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632105

RESUMEN

A triply linked dicarbacorrole dimer (7) was synthesized from a new meso-meso singly linked dicarbacorrole dimer precursor (6) via an oxidative fusion reaction by 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) in the presence of trifluoromethanesulfonic acid (TfOH). Single crystal X-ray structure of 7 adopts a flat conformation with a length as ca. 15.946 Šand a width as 6.903 Å, which can be regarded as a short carbaporphyrinoid tape. Two coordinated Cu ions keeps the +3 oxidation state in 7, as confirmed by NMR spectroscopy, single crystal X-ray diffraction and X-ray photoelectron spectroscopy (XPS). This is in sharp contrast to the Osuka's triply linked tetrapyrrolic corrole dimers, where the inner 3NH form is not stable and thus can only act as a divalent ligand. Due to the non-aromatic nature of dicarbacorrole macrocycle, the largely decreased HOMO-LUMO gap and red-shifted absorption of 7 are best ascribed to the strong electronic interaction between two dipyrromethene-type chromophores. To our knowledge, this is the first fully fused carbaporphyrinoid dimer with ß-ß, meso-meso, ß-ß triply linkages prepared to date.

2.
Nat Commun ; 15(1): 2913, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575609

RESUMEN

Carbaporphyrin dimers, investigated for their distinctive electronic structures and exceptional properties, have predominantly consisted of systems containing identical subunits. This study addresses the associated knowledge gap by focusing on asymmetric carbaporphyrin dimers with Janus-like characteristics. The synthesis of a Janus-type carbaporphyrin pseudo-dimer 5 is presented. It displays antiaromatic characteristics on the fused side and nonaromatic behavior on the unfused side. A newly synthesized tetraphenylene (TPE) linked bis-dibenzihomoporphyrin 8 and a previously reported dibenzo[g,p]chrysene (DBC) linked bis-dicarbacorrole 9 were prepared as controls. Comprehensive analyses, including 1H NMR spectral studies, single crystal X-ray diffraction analyses, and DFT calculations, validate the mixed character of 5. A further feature of the Janus pseudo-dimer 5 is that it may be transformed into a heterometallic complex, with one side coordinating a Cu(III) center and the other stabilizing a BODIPY complex. This disparate regiochemical reactivity underscores the potential of carbaporphyrin dimers as versatile frameworks, with electronic features and site-specific coordination chemistry controlled through asymmetry. These findings position carbaporphyrin dimers as promising candidates for advances in electronic structure studies, coordination chemistry, materials science, and beyond.

3.
Curr Microbiol ; 81(2): 54, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38189839

RESUMEN

An endophytic bacterium Paenibacillus polymyxa DS-R5 which can effectively inhibit the growth of pathogenic fungi was isolated from Salvia miltiorrhiza in our previous study. By using hydrochloric acid precipitation, methanol extraction, silica gel column isolation, dextran gel chromatography column, and HPLC, 3 compounds with antifungal activity were isolated. To further improve the production of antifungal compounds produced by this strain, fermentation medium was optimized using one-factor-at-a-time, Plackett-Burman design, and Box-Behnken design experiments. Through statistical optimization, the optimal medium composition was determined to be as follows: 14.7 g/l sucrose, 20.0 g/l soluble starch, 7.0 g/l corn steep liquor, 10.0 g/l (NH4)2SO4, and 0.7 g/l KH2PO4. In this optimized medium, the highest titer of antifungal compounds reached 3452 U/ml, which was 123% higher than that in the initial medium. In addition, in order to guide scale-up for production, logistic and Luedeking-Piret equations were proposed to predict the cell growth and antifungal compounds production. The fermentation kinetics and empirical equations of the coefficients (X0, Xm, µm, α, and ß) for the two models were reported, which will aid the design and optimization of industrial processes. The degrees of fit between calculated values of the model and the experimental data were 0.989 and 0.973, respectively. The results show that the cell growth and product synthesis models established in this study may better reflect the dynamic process of antifungal compounds production and provide a theoretical basis for further optimization and on-line monitoring of the fermentation process.


Asunto(s)
Paenibacillus polymyxa , Salvia miltiorrhiza , Antifúngicos/farmacología , Fermentación , Líquido Amniótico
4.
J Am Chem Soc ; 146(1): 543-551, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38147538

RESUMEN

A nanographene-fused expanded carbaporphyrin (5) and its BF2 complex (6) were synthesized. Single-crystal X-ray structures revealed that 5 and 6 are connected by two hexa-peri-hexabenzocoronene (HBC) units and two dipyrromethene or BODIPY units, respectively. As prepared, 5 and 6 both show nonaromatic character with figure-of-eight carbaoctaphyrin (1.1.1.0.1.1.1.0) cores and adopt tweezers-like conformations characterized by a partially confined space between the two constituent HBC units. The distance between the HBC centers is >10 Å, while the dihedral angles between the two HBC planes are 30.5 and 35.2° for 5 and 6, respectively. The interactions between 5 and 6 and fullerene C60 were studied both in organic media and in the solid state. Proton NMR spectral titrations of 5 and 6 with C60 revealed a 1:1 binding mode for both macrocycles. In toluene-d8, the corresponding binding constants were determined to be 1141 ± 17 and 994 ± 10 M-1 for 5 and 6, respectively. Single-crystal X-ray diffraction structural analyses confirmed the formation of 1:1 fullerene inclusion complexes in the solid state. The C60 guests in both complexes are found within triangular pockets composed of two HBC units from the tweezers-like receptor most closely associated with the bound fullerene, as well as an HBC unit from an adjacent host. Femtosecond transient absorption measurements revealed subpicosecond ultrafast charge separation between 5 (and 6) and C60 in the complexes. To the best of our knowledge, the present report provides the first example wherein a nanographene building block is incorporated into the core of a porphyrinic framework.

5.
Chem Sci ; 13(14): 4029-4040, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35440995

RESUMEN

Molecular nanoparticles including polyoxometalates, proteins, fullerenes and polyhedral oligosiloxane (POSS) are nanosized objects with atomic precision, among which POSS derivatives are the smallest nanosilicas. Incorporation of molecular nanoparticles into chiral aggregates either by chiral matrices or self-assembly allows for the transfer of supramolecular chirality, yet the construction of intrinsic chirality with atomic precision in discrete molecules remains a great challenge. In this work, we present a molecular folding strategy to construct giant POSS molecules with inherent chirality. Ferrocenyl diamino acids are conjugated by two or four POSS segments. Hydrogen bonding-driven folding of diamino acid arms into parallel ß-sheets facilitates the chirality transfer from amino acids to ferrocene and POSS respectively, disregarding the flexible alkyl spacers. Single crystal X-ray structures, density functional theory (DFT) calculations, circular dichroism and vibrational circular dichroism spectroscopy clearly verify the preferential formation of one enantiomer containing chiral molecular nanosilicas. The chiral orientation and chiroptical properties of POSS show pronounced dependence on the substituents of α-amino acids, affording an alternative way to control the folding behavior and POSS chirality in addition to the absolute configuration of amino acids. Through the kinetic nanoprecipitation protocol, one-dimensional aggregation enables chirality transfer from the molecular scale to the micrometer scale, self-assembling into helices in accordance with the packing propensity of POSS in a crystal phase. This work, by illustrating the construction of chiral molecular nanosilicas, paves a new way to obtain discrete chiral molecular nanoparticles for potential chiroptical applications.

6.
Front Plant Sci ; 12: 767882, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970284

RESUMEN

Bacterial wilt (BW) caused by Ralstonia solanacearum (R. solanacearum), is a vascular disease affecting diverse solanaceous crops and causing tremendous damage to crop production. However, our knowledge of the mechanism underlying its resistance or susceptibility is very limited. In this study, we characterized the physiological differences and compared the defense-related transcriptomes of two tobacco varieties, 4411-3 (highly resistant, HR) and K326 (moderately resistant, MR), after R. solanacearum infection at 0, 10, and 17 days after inoculation (dpi). A total of 3967 differentially expressed genes (DEGs) were identified between the HR and MR genotypes under mock condition at three time points, including1395 up-regulated genes in the HR genotype and 2640 up-regulated genes in the MR genotype. Also, 6,233 and 21,541 DEGs were induced in the HR and MR genotypes after R. solanacearum infection, respectively. Furthermore, GO and KEGG analyses revealed that DEGs in the HR genotype were related to the cell wall, starch and sucrose metabolism, glutathione metabolism, ABC transporters, endocytosis, glycerolipid metabolism, and glycerophospholipid metabolism. The defense-related genes generally showed genotype-specific regulation and expression differences after R. solanacearum infection. In addition, genes related to auxin and ABA were dramatically up-regulated in the HR genotype. The contents of auxin and ABA in the MR genotype were significantly higher than those in the HR genotype after R. solanacearum infection, providing insight into the defense mechanisms of tobacco. Altogether, these results clarify the physiological and transcriptional regulation of R. solanacearum resistance infection in tobacco, and improve our understanding of the molecular mechanism underlying the plant-pathogen interaction.

7.
Dalton Trans ; 50(28): 9695-9699, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34250534

RESUMEN

π-Conjugated amino acids are widely applied in chiroptical materials, in which chiroptical activities are believed to originate from supramolecular packing. However, the intramolecular contribution has been largely ignored. In this work, we report that intramolecular chirality transfer behaviors in ferrocene-conjugated amino acids depend on the substituent groups, which influence the modality of multiple intramolecular interactions, as well as the molecular geometry. The structural basis and structure-property relationships of chirality and chiroptical activities were unveiled in this work. Based on single crystal structure and density functional theory calculations, we demonstrate that intramolecular weak forces, including hydrogen bonds, CHπ interactions and van der Waals interactions, affect the molecular geometry and contribute to diverse Cotton effects. This work provides evidence for the ignored intramolecular factors in self-assembled systems and paves the way for the fabrication of functional chiroptical systems.


Asunto(s)
Aminoácidos/química , Compuestos Ferrosos/química , Metalocenos/química , Estereoisomerismo
8.
J Phys Chem Lett ; 12(4): 1307-1315, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33502203

RESUMEN

Halogenation brings about dramatic variations to the performance of self-assembled organic species, such as luminescence and crystallinity, but it has seldom been utilized for chirality control. Here we show the halogenation effect of self-assembling organic building units on supramolecular chirality and chiroptical responses. N-terminal aromatic amino acids with different substituted halogen atoms at p-phenylalanine residues self-assembled into one-dimensional fibrous structures. Halogenation induced the emergence of macroscopic chirality regardless of halogen properties like electronegativity, generating exclusive homochiral helical structures. Solid-state X-ray structures and time-dependent density functional theory were utilized for calculated electronic circular dichroism spectra, which evidenced the diverse driving forces to enable chiral molecular arrangements, including H-bonds and halogen bonds. Red-shifted luminescence was observed in brominated building units, giving rise to active circularly polarized luminescence. This work elucidates the multiple roles of halogen in chiral self-assembly systems, which provides insight into the rational control over supramolecular chirality and their chiroptical applications.


Asunto(s)
Aminoácidos Aromáticos/química , Hidrocarburos Halogenados/química , Halogenación , Hidrocarburos Halogenados/síntesis química , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Simulación de Dinámica Molecular , Estructura Molecular , Nanoestructuras/química , Tamaño de la Partícula
9.
Nanoscale ; 12(40): 20610-20620, 2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33090165

RESUMEN

Helix is an important secondary structure in proteins and polypeptides, which, however, has rarely been recognized in amino acids or their simple derivatives. In this work, we firstly unveil the generic existence of supramolecular helical secondary structures in solid-state N-protected amino acids. Throughout searching in Cambridge Structural Database followed by screening, ∼10% N-protected amino acids were evidenced to form H-bonded helical structures, thus covering 15 coded amino acids and diverse types of protecting groups. Helical structures were typically classified as 21 and 31 symmetry, and specific double-strand helical structures were discovered. Computational studies on the calculated electronic circular dichroism spectra show well-defined correlation to experimental results, indicative of the supramolecular secondary structures that possess feature Cotton effects similar to naturally occurring α-helices in proteins. Such feature Cotton effects could be transferred to protecting groups, which is of vital significance to the emerging chiroptical materials. This work highlighting the neglected structural analysis would offer a better understanding and deep insight into the structure relationship on the supramolecular chiral materials, crystal engineering and chiroptical materials based on amino acids and their derivatives.


Asunto(s)
Aminoácidos , Péptidos , Dicroismo Circular , Estructura Secundaria de Proteína
10.
J Phys Chem Lett ; 11(10): 4147-4155, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32368918

RESUMEN

Helical structures are important features of many important biomacromolecules such as double helices and single α-helices in DNA and protein, respectively, yet the self-organization of short oligopeptides (<3) or independent amino acids into artificial helical structures on the atomic level remains mysterious. Here we present the direct construction of artificial double and single helices from N-terminated aryl amino acids (ferrocene phenylalanine (Phe) conjugates) despite both Phe and Phe-Phe dipeptide self-aggregations adopting supramolecular ß-sheet structures, which also demonstrated chirality evolution exposed to small molecular binders. In the solid state, the box-shaped building unit stacks into a double helix with enantiomer-resolved handedness driven orthogonally by H-bonds and the CH-π interaction. The entire double helix is noncovalently linked except for the hybridization regions. Asymmetric H-bonds between carboxylic acids and amides facilitates the one-dimensional helical packing of amino acid residues. The ditopic building unit adopts intramolecular H-bonds, facilitating single-strand helix formation. In aqueous self-assemblies, the superhelical structures were retained, which underwent chirality transfer and handedness inversion upon complexation orthogonally by H-bonds and charge-transfer interaction, showing adaptivity to environmental factors.


Asunto(s)
Aminoácidos/síntesis química , Dipéptidos/química , Aminoácidos/química , Enlace de Hidrógeno , Modelos Moleculares , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...