Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(2): e2214912120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595702

RESUMEN

Circulating tumor microenvironment-derived extracellular vesicles (cTME-EVs) are gaining considerable traction in cancer research and liquid biopsy. However, the study of cTME-EVs is largely limited by the dearth of a general isolation technique to selectively enrich cTME-EVs from biological fluids for downstream analysis. In this work, we broke through this dilemma by presenting a double-switch pH-low insertion peptide (D-S pHLIP) system to exclusively harvest cTME-EVs from the blood serum of tumor mouse models. This D-S pHLIP system consists of a highly sensitive pH-driven conformational switch (pKa ≈ 6.8) that allows specific installation of D-S pHLIP on the EV membranes in TME (pH 6.5 to 6.8) and a unique hook-like switch to "lock" the peptide securely on the cTME-EVs during the systemic circulation. The D-S pHLIP-anchored cTME-EVs were magnetically enriched and then analyzed with high-resolution messenger RNA sequencing, by which more than 18 times the number of TME-related differentially expressed genes and 10 times the number of hub genes were identified, compared with those achieved by the gold-standard ultracentrifugation. This work could revolutionize basic TME research as well as clinical liquid biopsy for cancer.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Animales , Ratones , Biomarcadores de Tumor/genética , Microambiente Tumoral , Vesículas Extracelulares/genética , Biopsia Líquida
2.
JACS Au ; 3(1): 227-238, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36711106

RESUMEN

Carbapenemase-producing bacteria (CPB) stand as the most dangerous "superbugs" in the clinic. Rapid point-of-care (POC) detection of CPB in clinical samples is key to timely and effective infection management. We herein report the first ultrasensitive chromogenic probe that allows direct POC detection of CPB in clinical sputum samples at a sample-to-result time of less than 15 min. This chromogenic probe is modularly designed by conjugating the carbapenem core with a benzene derivative bearing an electronegativity-tunable substituent. Unexpectedly high sensitivity was achieved simply by choosing strong electron-withdrawing substituents, such as -N+(CH3)3, without resorting to complex molecular design. Through integrating the probes with a portable paper chip, 24 out of 80 clinical sputum samples from sepsis patients with lung infections were quickly diagnosed as CPB-positive, exhibiting 100% clinical sensitivity and specificity. This low-cost paper chip assay can be readily performed on-site, breaking through the dilemma of rapid CPB detection, especially in resource-limited settings.

3.
Nat Commun ; 13(1): 1449, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304453

RESUMEN

Glucuronoyl esterases (GEs) are α/ß serine hydrolases and a relatively new addition in the toolbox to reduce the recalcitrance of lignocellulose, the biggest obstacle in cost-effective utilization of this important renewable resource. While biochemical and structural characterization of GEs have progressed greatly recently, there have yet been no mechanistic studies shedding light onto the rate-limiting steps relevant for biomass conversion. The bacterial GE OtCE15A possesses a classical yet distinctive catalytic machinery, with easily identifiable catalytic Ser/His completed by two acidic residues (Glu and Asp) rather than one as in the classical triad, and an Arg side chain participating in the oxyanion hole. By QM/MM calculations, we identified deacylation as the decisive step in catalysis, and quantified the role of Asp, Glu and Arg, showing the latter to be particularly important. The results agree well with experimental and structural data. We further calculated the free-energy barrier of post-catalysis dissociation from a complex natural substrate, suggesting that in industrial settings non-catalytic processes may constitute the rate-limiting step, and pointing to future directions for enzyme engineering in biomass utilization.


Asunto(s)
Esterasas , Hidrolasas , Biomasa , Catálisis , Esterasas/metabolismo
4.
Small Methods ; 6(2): e2101234, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35174989

RESUMEN

Exosomes, ranging from 30-150 nm in diameter, have emerged as promising non-invasive biomarkers for the diagnosis and prognosis of numerous diseases. However, current research on exosomes is largely restricted by the lack of an efficient method to isolate exosomes from real samples. Herein, the first stimuli-mediated enrichment and purification system to selectively and efficiently extract exosomes from clinical plasma for high-throughput profiling of exosomal mRNAs as cancer biomarkers is presented. This novel isolation system relies on specific installation of the stimuli-responsive copolymers onto exosomal phospholipid bilayers, by which the enrichment and purification are exclusively achieved for exosomes rather than the non-vesicle counterparts co-existing in real samples. The stimuli-mediated isolation system outperforms conventional methods such as ultracentrifugation and polyethylene glycol-based precipitation in terms of isolation yield, purity, and retained bioactivity. The high performance of the isolation system is demonstrated by enriching exosomes from 77 blood plasma samples and validated the clinical potentials in profiling exosomal mRNAs for cancer diagnosis and discrimination with high accuracy. This simple isolation system can boost the development of extracellular vesicle research, not limited to exosomes, in both basic and clinical settings.


Asunto(s)
Biomarcadores de Tumor/genética , Exosomas/genética , Neoplasias/diagnóstico , Acrilamidas/química , Biomarcadores de Tumor/sangre , Estudios de Casos y Controles , Detección Precoz del Cáncer , Humanos , Células MCF-7 , Neoplasias/sangre , Neoplasias/genética , Termodinámica
5.
FEBS J ; 289(4): 1135-1148, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34665941

RESUMEN

Temperate bacteriophages can switch between two life cycles following infection of a host bacterium: the lytic or lysogenic life cycle. The choice between these is controlled by a bistable genetic switch. We investigated the genetic switch of the lactococcal temperate bacteriophage, TP901-1, which is controlled by two regulatory proteins, the Clear 1 (CI) repressor and modulator of repression (MOR) antirepressor. CI consists of a DNA-binding N-terminal domain and a C-terminal domain responsible for oligomerization, connected by a flexible interdomain linker. Full-length CI is hexameric, whereas the truncated version CI with 58 C-terminal residues truncated (CIΔ58), missing the second C-terminal subdomain, is dimeric, but binds with the same affinity as full-length CI to the OL operator site, responsible for lytic genes transcription repression. Three variants of CIΔ58 with shorter, longer, and PP substituted linkers were produced and confirmed by circular dichroism spectroscopy and nanodifferential scanning fluorimetry to be well folded. With small-angle X-ray scattering, we delineated the conformational space sampled by the variants and wild-type in solution and found that shortening and lengthening the linker decrease and increase this, respectively, as also substantiated by molecular dynamics and as intended. Isoelectric focusing electrophoresis confirmed that all variants are able to bind to the MOR antirepressor. However, using electrophoretic mobility shift assays, we showed that shortening and lengthening the linker lead to a 94 and 17 times decrease in affinity to OL , respectively. Thus, an appropriate linker length appears to be crucial for appropriate DNA-binding and subsequent TP901-1 genetic switch function.


Asunto(s)
Bacteriófagos/genética , ADN/metabolismo , Proteínas Represoras/metabolismo , Bacteriófagos/metabolismo , Sitios de Unión , ADN/química , Modelos Moleculares , Proteínas Represoras/química , Proteínas Represoras/genética , Dispersión del Ángulo Pequeño , Rayos X
6.
Nano Lett ; 21(20): 8817-8823, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34609888

RESUMEN

Exosomes have recently emerged as some of the most promising biomarkers for disease diagnosis. Due to their small sizes and composition heterogeneity, exosomes are difficult to detect by currently available platforms. Here, we report a pH-mediated assembly system that converts single nanosized exosomes into microsized clusters, which can be directly analyzed by conventional flow cytometry (FCM), breaking through the size limit of exosome analysis. We demonstrated the clinical utility of the pH-mediated clustering system by profiling the exosomal proteins from blood plasma samples of 33 cancer patients and 11 benign controls. The results indicated that the combination of MUC-1 and PD-L1 could serve as a new biomarker panel for the early diagnosis of liver cancer with high clinical accuracy. This pH-mediated assembly strategy allows rapid, sensitive, and high-throughput analysis of exosome biomarkers by conventional FCM, which can be easily refined for use in both basic and clinical settings.


Asunto(s)
Exosomas , Neoplasias Hepáticas , Biomarcadores de Tumor , Análisis por Conglomerados , Citometría de Flujo , Humanos , Concentración de Iones de Hidrógeno
7.
J Am Chem Soc ; 141(36): 14451-14459, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31432675

RESUMEN

Searching for viable strategies to accelerate the catalytic cycle of glycoside hydrolase family 7 (GH7) cellobiohydrolase I (CBHI)-the workhorse cellulose-degrading enzymes, we have performed a total of 12-µs molecular dynamics simulations on GH7 CBHI, which brought to light a new mechanism for cellobiose expulsion, coined "claw-arm" action. The loop flanking the product binding site plays the role of a flexible "arm" extending toward cellobiose, and residue Thr389 of this loop acts as a "claw" that captures cellobiose. Five mutations of residue Thr389 were considered to enhance the loop-cellobiose interaction. The lysine mutant was found to significantly accelerate cellobiose expulsion and facilitate polysaccharide-chain translocation. Lysine mutation of Thr393 in Talaromyces emersonii CBHI (TeCel7A) performed similarly. Lysine approaches the catalytic area and stabilizes the Michaelis complex, potentially affecting glycosylation, the rate-limiting step of the catalytic cycle. QM/MM calculations indicate that lysine replacement diminishes the barrier against proton transfer, the crucial step of glycosylation, by 2.3 kcal/mol. Experimental validation was performed using the full-length wild-type (WT) of TeCel7A and its mutants, recombinantly expressed in Pichia pastoris, to degrade the substrates. Compared with the WT, the lysine mutant revealed an associated higher enzymatic reaction rate. Furthermore, cellobiose yield was also increased by lysine mutation, indicating that dissociation of the enzyme from cellulose was accelerated, which largely stems from the enhanced flexibility of the "arm". The present work is envisioned to help design strategies for improving enzymatic activity, while decreasing enzyme cost.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/metabolismo , Lisina/metabolismo , Biocatálisis , Celulosa 1,4-beta-Celobiosidasa/química , Lisina/química , Lisina/genética , Simulación de Dinámica Molecular , Mutación , Talaromyces/enzimología
8.
J Sci Food Agric ; 98(7): 2540-2547, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29028116

RESUMEN

BACKGROUND: ß-mannanase is a key enzyme for hydrolyzing mannan, a major constituent of hemicellulose, which is the second most abundant polysaccharide in nature. Different structural domains greatly affect its biochemical characters and catalytic efficiency. However, the effects of linker and carbohydrate-binding module (CBM) on ß-mannanase from Trichoderma reesei (Man1) have not yet been fully described. The present study aimed to determine the influence of different domains on the expression efficiency, biochemical characteristics and hemicellulosic deconstruction of Man1. RESULTS: The expression efficiency was improved after truncating CBM. Activities of Man1 and Man1ΔCBM (CBM) in the culture supernatant after 168 h of induction were 34.5 and 42.9 IU mL-1 , although a value of only 0.36 IU mL-1 was detected for Man1ΔLCBM (lacking CBM and linker). Man1 showed higher thermostability than Man1ΔCBM at low temperature, whereas Man1ΔCBM had a higher specificity for galactomannan (Km = 2.5 mg mL-1 ) than Man1 (Km = 4.0 mg mL-1 ). Both Man1 and Man1ΔCBM could synergistically improve the hydrolysis of cellulose, galactomannan and pretreated sugarcane bagasse, with a 10-30% improvement of the reducing sugar yield. CONCLUSION: Linker and CBM domains were vital for mannanase activity and expression efficiency. CBM affected the thermostability and adsorption ability of Man1. The results obtained in the present study should help guide the rational design and directional modification of Man with respect to improving its catalytic efficiency. © 2017 Society of Chemical Industry.


Asunto(s)
Proteínas Fúngicas/química , Saccharum/química , Trichoderma/enzimología , beta-Manosidasa/química , Biocatálisis , Celulosa/química , Estabilidad de Enzimas , Proteínas Fúngicas/metabolismo , Galactosa/análogos & derivados , Hidrólisis , Mananos/química , beta-Manosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...