Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37048994

RESUMEN

Ce3+ doped Al2O3-YAG eutectics were successfully grown by the horizontal directional crystallization method. The crystallization rate of eutectic growth was changed in the 1-7.5 mm/h range at a growth temperature of 1835 ℃. The microstructure of eutectic samples was investigated using scanning electron microscopy and X-ray microtomography. The intrinsic morphology of eutectic represents the stripe-like channel structure with a random distribution of the garnet Y3Al5O12 (YAG) and Al2O3 (sapphire) phases. The content of these phases in the stripes changes in the 52.9-55.3% and 46.1-47.1% ratios, respectively, depending on the growth rate of the crystallization of the eutectic samples. The luminescent properties of the eutectic demonstrated the dominant Ce3+ luminescence in the garnet phase. The luminescence of the Ce3+ ions in Al2O3 has also been observed and the effective energy transfer processes between Ce3+ ions in the Al2O3 and YAG garnet phases were revealed under high-energy excitation and excitation in the UV Ce3+ absorption bands of sapphire. The phosphor conversion properties and the color characteristics (Al2O3-YAG):Ce eutectic with different thicknesses were investigated under excitation by a blue LED. We have also tested the prototypes of white LEDs, prepared using a blue 450 nm LED chip and (Al2O3-YAG):Ce eutectic photoconverters with 0.15 to 1 mm thicknesses. The results of the tests are promising and can be used for the creation of photoconverters for high-power white LEDs.

2.
Materials (Basel) ; 16(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36902985

RESUMEN

This research focuses on LPE growth, and the examination of the optical and photovoltaic properties of single crystalline film (SCF) phosphors based on Ce3+-doped Y3MgxSiyAl5-x-yO12 garnets with Mg and Si contents in x = 0-0.345 and y = 0-0.31 ranges. The absorbance, luminescence, scintillation, and photocurrent properties of Y3MgxSiyAl5-x-yO12:Ce SCFs were examined in comparison with Y3Al5O12:Ce (YAG:Ce) counterpart. Especially prepared YAG:Ce SCFs with a low (x, y < 0.1) concentration of Mg2+ and Mg2+-Si4+ codopants also showed a photocurrent that increased with rising Mg2+ and Si4+ concentrations. Mg2+ excess was systematically present in as-grown Y3MgxSiyAl5-x-yO12:Ce SCFs. The as-grown SCFs of these garnets under the excitation of α-particles had a low light yield (LY) and a fast scintillation response with a decay time in the ns range due to producing the Ce4+ ions as compensators for the Mg2+ excess. The Ce4+ dopant recharged to the Ce3+ state after SCF annealing at T > 1000 °C in a reducing atmosphere (95%N2 + 5%H2). Annealed SCF samples exhibited an LY of around 42% and similar scintillation decay kinetics to those of the YAG:Ce SCF counterpart. The photoluminescence studies of Y3MgxSiyAl5-x-yO12:Ce SCFs provide evidence for Ce3+ multicenter formation and the presence of an energy transfer between various Ce3+ multicenters. The Ce3+ multicenters possessed variable crystal field strengths in the nonequivalent dodecahedral sites of the garnet host due to the substitution of the octahedral positions by Mg2+ and the tetrahedral positions by Si4+. In comparison with YAG:Ce SCF, the Ce3+ luminescence spectra of Y3MgxSiyAl5-x-yO12:Ce SCFs greatly expanded in the red region. Using these beneficial trends of changes in the optical and photocurrent properties of Y3MgxSiyAl5-x-yO12:Ce garnets as a result of Mg2+ and Si4+ alloying, a new generation of SCF converters for white LEDs, photovoltaics, and scintillators could be developed.

3.
Materials (Basel) ; 15(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36556514

RESUMEN

Single-crystalline films (SCFs) of the LuAG: Ce garnet grown using the liquid-phase epitaxy method onto YAG single-crystal (SC) substrates were investigated for possible applications as composite thermoluminescent (TL) detectors. Such detectors may help to register the different components of ionizing radiation fields with various penetration depths, e.g., heavy charged particles and gamma or beta rays. It was found that the TL signal of LuAG: Ce SCF sufficiently differs from that of the YAG substrate concerning both the temperature and wavelength of emissions. Furthermore, even by analyzing TL glow curves, it was possible to distinguish the difference between weakly and deeply penetrating types of radiation. Within a test involving the exposure of detectors with the mixed alpha/beta radiations, the doses of both components were determined with an accuracy of a few percent.

4.
Materials (Basel) ; 15(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36499974

RESUMEN

This work is dedicated to the development of new types of composite thermoluminescent detectors based on the single crystalline films of Ce-doped GdAlO3 perovskite and Mn-doped YAlO3 and (Lu0.8Y0.2)AlO3:Mn perovskites as well as Ce and Pr-doped YAlO3 single crystal substrates. These detectors were obtained using the Liquid Phase Epitaxy growth method from the melt solution based on the PbO-B2O3 fluxes. Such composite detectors can by applied for the simultaneous registration of different components of mixed ionization fluxes using the differences between the thermoluminescent glow curves, recorded from the film and crystal parts of epitaxial structures. For creation of the new composite detectors, we considered using, for the film and crystal components of epitaxial structures (i) the different perovskite matrixes doped with the same type of activator or (ii) the same perovskite host with various types of activators. The thermoluminescent properties of the different types of epitaxial structures based on the abovementioned films and crystal substrates were examined in the conditions of ß-particles and X-ray excitation with aim of determination of the optimal combination of perovskites for composite detectors. It was shown that, among the structures with all the studied compositions, the best properties for the simultaneous thermoluminescent detection of α- and X-rays were the GdAlO3:Ce film/YAlO3:Ce crystal epitaxial structure.

5.
Materials (Basel) ; 15(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36431411

RESUMEN

The crystals of (Lu,Gd)3(Ga,Al)5O12 multicomponent garnets with high density ρ and effective atomic number Zeff are characterized by high scintillation efficiency and a light yield value up to 50,000 ph/MeV. During recent years, single-crystalline films and composite film/crystal scintillators were developed on the basis of these multicomponent garnets. These film/crystal composites are potentially applicable for particle identification by pulse shape discrimination due to the fact that α-particles excite only the film response, γ-radiation excites only the substrate response, and ß-particles excite both to some extent. Here, we present new results regarding scintillating properties of selected (Lu,Gd)3(Ga,Al)5O12:Ce single-crystalline films under excitation by alpha and beta particles and gamma ray photons. We conclude that some of studied compositions are indeed suitable for testing in the proposed application, most notably Lu1.5Gd1.5Al3Ga2O12:Ce film on the GAGG:Ce substrate, exhibiting an α-particle-excited light yield of 1790-2720 ph/MeV and significantly different decay curves excited by α- and γ-radiation.

6.
Materials (Basel) ; 15(11)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35683240

RESUMEN

This work is dedicated to the crystallization and luminescent properties of a prospective Ca2YMgScSi3O12:Ce (CYMSSG:Ce) micropowder (MP) phosphor converter (pc) for a white light-emitting LED (WLED). The set of MP samples was obtained by conventional solid-phase synthesis using different amounts of B2O3 flux in the 1-5 mole percentage range. The luminescent properties of the CYMSSG:Ce MPs were investigated at different Ce3+ concentrations in the 1-5 atomic percentage range. The formation of several Ce3+ multicenters in the CYMSSG:Ce MPs was detected in the emission and excitation spectra as well as the decay kinetics of the Ce3+ luminescence. The creation of the Ce3+ multicenters in CYMSSG:Ce garnet results from: (i) the substitution by the Ce3+ ions of the heterovalent Ca2+ and Y3+ cations in the dodecahedral position of the garnet host; (ii) the inhomogeneous local environment of the Ce3+ ions when the octahedral positions of the garnet are replaced by heterovalent Mg2+ and Sc3+ cations and the tetrahedral positions are replaced by Si4+ cations. The presence of Ce3+ multicenters significantly enhances the Ce3+ emission band in the red range in comparison with conventional YAG:Ce phosphor. Prototypes of the WLEDs were also created in this work by using CYMSSG:Ce MP films as phosphor converters. Furthermore, the dependence of the photoconversion properties on the layer thickness of the CYMSSG:Ce MP was studied as well. The changes in the MP layer thickness enable the tuning of the white light thons from cold white/daylight to neutral white. The obtained results are encouraging and can be useful for the development of a novel generation of pcs for WLEDs.

7.
Materials (Basel) ; 15(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35161191

RESUMEN

This manuscript summarizes recent results on the development of composite luminescent materials based on the single-crystalline films and single crystals of simple and mixed garnet compounds obtained by the liquid-phase epitaxy growth method. Such composite materials can be applied as scintillating and thermoluminescent (TL) detectors for radiation monitoring of mixed ionization fluxes, as well as scintillation screens in the microimaging techniques. The film and crystal parts of composite detectors were fabricated from efficient scintillation/TL materials based on Ce3+-, Pr3+-, and Sc3+-doped Lu3Al5O12 garnets, as well as Ce3+-doped Gd3-xAxAl5-yGayO12 mixed garnets, where A = Lu or Tb; x = 0-1; y = 2-3 with significantly different scintillation decay or positions of the main peaks in their TL glow curves. This work also summarizes the results of optical study of films, crystals, and epitaxial structures of these garnet compounds using absorption, cathodoluminescence, and photoluminescence. The scintillation and TL properties of the developed materials under α- and ß-particles and γ-quanta excitations were studied as well. The most efficient variants of the composite scintillation and TL detectors for monitoring of composition of mixed beams of ionizing radiation were selected based on the results of this complex study.

8.
Materials (Basel) ; 13(9)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349255

RESUMEN

In this work, the luminescence properties of undoped, Tm3+ doped, and Tb3+ plus Tm3+ double-doped crystals of the lithium magnesium phosphate (LiMgPO4, LMP) compound were investigated. The crystals under study were grown from melt using the micro-pulling-down method. The intrinsic and dopant-related luminescence of these crystals were studied using cathodo-, radio-, photo-, and thermoluminescence methods. Double doping with Tb3+ and Tm3+ ions was analyzed as these dopants are expected to exhibit an opposite trapping nature, namely to create the hole and electron-trapping sites, respectively. The spectra measured for the undoped samples revealed three prominent broad emission bands with maxima at around 3.50, 2.48, and 1.95 eV, which were associated with intrinsic structural defects within the studied compound. These were expected due to the anion vacancies forming F+-like centers while trapping the electrons. The spectra measured for Tb and Tm double-doped crystals showed characteristic peaks corresponding to the 4f-4f transitions of these dopants. A simplified model of a recombination mechanism was proposed to explain the temperature dependence of the measured thermally stimulated luminescence spectra. It seems that at low temperatures (below 300 °C), the charge carriers were released from 5D3-related Tb3+ trapping sites and recombination took place at Tm-related sites, giving rise to the characteristic emission of Tm3+ ions. At higher temperatures, above 300 °C, the electrons occupying the Tm3+-related trapping sites started to be released, and recombination took place at 5D4-related Tb3+ recombination centers, giving rise to the characteristic emission of Tb3+ ions. The model explains the temperature dependence observed for the luminescence emission from double-doped LiMgPO4 crystals and may be fully applicable for the consideration of emissions of other double-doped compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...