Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 895526, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875570

RESUMEN

Rhizobium leguminosarum synthesizes an acidic polysaccharide mostly secreted to the extracellular medium, known as exopolysaccharide (EPS) and partially retained on the bacterial surface as a capsular polysaccharide (CPS). Rap proteins, extracellular protein substrates of the PrsDE type I secretion system (TISS), share at least one Ra/CHDL (cadherin-like) domain and are involved in biofilm matrix development either through cleaving the polysaccharide by Ply glycanases or by altering the bacterial adhesive properties. It was shown that the absence or excess of extracellular RapA2 (a monomeric CPS calcium-binding lectin) alters the biofilm matrix's properties. Here, we show evidence of the role of a new Rap protein, RapD, which comprises an N-terminal Ra/CHDL domain and a C-terminal region of unknown function. RapD was completely released to the extracellular medium and co-secreted with the other Rap proteins in a PrsDE-dependent manner. Furthermore, high levels of RapD secretion were found in biofilms under conditions that favor EPS production. Interestingly, size exclusion chromatography of the EPS produced by the ΔrapA2ΔrapD double mutant showed a profile of EPS molecules of smaller sizes than those of the single mutants and the wild type strain, suggesting that both RapA2 and RapD proteins influence EPS processing on the cell surface. Biophysical studies showed that calcium triggers proper folding and multimerization of recombinant RapD. Besides, further conformational changes were observed in the presence of EPS. Enzyme-Linked ImmunoSorbent Assay (ELISA) and Binding Inhibition Assays (BIA) indicated that RapD specifically binds the EPS and that galactose residues would be involved in this interaction. Taken together, these observations indicate that RapD is a biofilm matrix-associated multimeric protein that influences the properties of the EPS, the main structural component of the rhizobial biofilm.

2.
Microbiology (Reading) ; 168(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36748557

RESUMEN

Rhizobium adhering proteins or 'Raps' are secreted proteins identified in a very restricted group of rhizobial strains, specifically those belonging to R. leguminosarum and R. etli. The distinctive feature of members of the Rap family is the presence of one or two cadherin-like domains or CHDLs that are also present in numerous extracellular bacterial and archaeal proteins and were proposed to confer carbohydrate binding ability. We have previously made an in-depth characterization of RapA2, a calcium-binding lectin, composed by two CHDLs, involved in biofilm matrix remodelling in R. leguminosarum bv. viciae 3841. In this study, CHDLs derived from RapA2 were analysed in detail, finding significant structural and functional differences despite their considerable sequence similarity. Only the carboxy-terminal CHDL retained properties similar to those displayed by RapA2. Our findings were used to obtain a novel fluorescent probe to study biofilm matrix development by confocal laser scanning microscopy, and also to shed some light on the role of the ubiquitous CHDL domains in bacterial secreted proteins.


Asunto(s)
Rhizobium leguminosarum , Rhizobium , Rhizobium/metabolismo , Cadherinas/metabolismo , Proteínas Fluorescentes Verdes , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Proteínas Bacterianas/metabolismo
3.
Front Cell Infect Microbiol ; 11: 607610, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33987105

RESUMEN

Adhesion to host cells is a key step for successful infection of many bacterial pathogens and may define tropism to different host tissues. To do so, bacteria display adhesins on their surfaces. Brucella is an intracellular pathogen capable of proliferating in a wide variety of cell types. It has been described that BmaC, a large protein that belongs to the classical (type Va) autotransporter family, is required for efficient adhesion of Brucella suis strain 1330 to epithelial cells and fibronectin. Here we show that B. suis 1330 harbors two other type Va autotransporters (BmaA and BmaB), which, although much smaller, share significant sequence similarities with BmaC and contain the essential domains to mediate proper protein translocation to the bacterial surface. Gain and loss of function studies indicated that BmaA, BmaB, and BmaC contribute, to a greater or lesser degree, to adhesion of B. suis 1330 to different cells such as synovial fibroblasts, osteoblasts, trophoblasts, and polarized epithelial cells as well as to extracellular matrix components. It was previously shown that BmaC localizes to a single bacterial pole. Interestingly, we observed here that, similar to BmaC, the BmaB adhesin is localized mostly at a single cell pole, reinforcing the hypothesis that Brucella displays an adhesive pole. Although Brucella species have strikingly similar genomes, they clearly differ in their host preferences. Mainly, the differences identified between species appear to be at loci encoding surface proteins. A careful in silico analysis of the putative type Va autotransporter orthologues from several Brucella strains showed that the bmaB locus from Brucella abortus and both, the bmaA and bmaC loci from Brucella melitensis are pseudogenes in all strains analyzed. Results reported here evidence that all three autotransporters play a role in the adhesion properties of B. suis 1330. However, Brucella spp. exhibit extensive variations in the repertoire of functional adhesins of the classical autotransporter family that can be displayed on the bacterial surface, making them an interesting target for future studies on host preference and tropism.


Asunto(s)
Brucella suis , Sistemas de Secreción Tipo V , Adhesinas Bacterianas/genética , Adhesivos , Brucella abortus , Brucella suis/genética , Sistemas de Secreción Tipo V/genética
4.
mBio ; 12(2)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879593

RESUMEN

The ability to sense and respond to environmental cues is essential for adaptation and survival in living organisms. In bacteria, this process is accomplished by multidomain sensor histidine kinases that undergo autophosphorylation in response to specific stimuli, thereby triggering downstream signaling cascades. However, the molecular mechanism of allosteric activation is not fully understood in these important sensor proteins. Here, we report the full-length crystal structure of a blue light photoreceptor LOV histidine kinase (LOV-HK) involved in light-dependent virulence modulation in the pathogenic bacterium Brucella abortus Joint analyses of dark and light structures determined in different signaling states have shown that LOV-HK transitions from a symmetric dark structure to a highly asymmetric light state. The initial local and subtle structural signal originated in the chromophore-binding LOV domain alters the dimer asymmetry via a coiled-coil rotary switch and helical bending in the helical spine. These amplified structural changes result in enhanced conformational flexibility and large-scale rearrangements that facilitate the phosphoryl transfer reaction in the HK domain.IMPORTANCE Bacteria employ two-component systems (TCSs) to sense and respond to changes in their surroundings. At the core of the TCS signaling pathway is the multidomain sensor histidine kinase, where the enzymatic activity of its output domain is allosterically controlled by the input signal perceived by the sensor domain. Here, we examine the structures and dynamics of a naturally occurring light-sensitive histidine kinase from the pathogen Brucella abortus in both its full-length and its truncated constructs. Direct comparisons between the structures captured in different signaling states have revealed concerted protein motions in an asymmetric dimer framework in response to light. Findings of this work provide mechanistic insights into modular sensory proteins that share a similar modular architecture.


Asunto(s)
Proteínas Bacterianas/metabolismo , Brucella abortus/enzimología , Brucella abortus/metabolismo , Color , Histidina Quinasa/química , Histidina Quinasa/metabolismo , Luz , Proteínas Bacterianas/genética , Brucella abortus/genética , Brucella abortus/patogenicidad , Histidina Quinasa/genética , Modelos Moleculares , Dominios Proteicos , Transducción de Señal
5.
Pathogens ; 9(11)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198223

RESUMEN

A central aspect of Brucella pathogenicity is its ability to invade, survive, and replicate in diverse phagocytic and non-phagocytic cell types, leading to chronic infections and chronic inflammatory phenomena. Adhesion to the target cell is a critical first step in the invasion process. Several Brucella adhesins have been shown to mediate adhesion to cells, extracellular matrix components (ECM), or both. These include the sialic acid-binding proteins SP29 and SP41 (binding to erythrocytes and epithelial cells, respectively), the BigA and BigB proteins that contain an Ig-like domain (binding to cell adhesion molecules in epithelial cells), the monomeric autotransporters BmaA, BmaB, and BmaC (binding to ECM components, epithelial cells, osteoblasts, synoviocytes, and trophoblasts), the trimeric autotransporters BtaE and BtaF (binding to ECM components and epithelial cells) and Bp26 (binding to ECM components). An in vivo role has also been shown for the trimeric autotransporters, as deletion mutants display decreased colonization after oral and/or respiratory infection in mice, and it has also been suggested for BigA and BigB. Several adhesins have shown unipolar localization, suggesting that Brucella would express an adhesive pole. Adhesin-based vaccines may be useful to prevent brucellosis, as intranasal immunization in mice with BtaF conferred high levels of protection against oral challenge with B. suis.

6.
Front Immunol ; 10: 1775, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31402921

RESUMEN

Brucella enters their hosts mostly through mucosae from where it spreads systemically. Adhesion to extracellular matrix (ECM) components or to host cells is important for the infectious process, and is mediated by several adhesins, including the BtaF trimeric autotransporter. Although Th1 responses and gamma interferon (IFN-γ) are important for protection, antibodies able to block adhesions might also contribute to prevent Brucella infection. We evaluated the importance of BtaF for respiratory Brucella infection, and characterized the immune response and protection from mucosal challenge induced by nasal vaccination with recombinant BtaF. While lung CFU numbers did not differ at day 1 p.i. between mice intratracheally inoculated with B. suis M1330 (wild type) and those receiving a ΔbtaF mutant, they were reduced in the latter group at 7 and 30 days p.i. For vaccination studies the BtaF passenger domain was engineered and expressed as a soluble trimeric protein. Mice were immunized by the nasal route with BtaF or saline (control group) plus the mucosal adjuvant c-di-AMP. Specific anti-BtaF antibodies (IgG and IgA) were increased in serum, including a mixed IgG2a/IgG1 response. In vitro, these antibodies reduced bacterial adhesion to A549 alveolar epithelial cells. Specific IgA antibodies were also increased in several mucosae. Spleen cells from BtaF immunized mice significantly increased their IL-2, IL-5, IL-17, and IFN-γ secretion upon antigen stimulation. In cervical draining lymph nodes, antigen-experienced CD4+ T cells were maintained mainly as central memory cells. A BtaF-specific delayed-type hypersensitivity response was detected in BtaF immunized mice. Lung cells from the latter produced high levels of IFN-γ upon antigen stimulation. Although nasal immunization with BtaF did not protect mice against B. suis respiratory challenge, it conferred significant protection from intragastric challenge; the splenic load of B. suis was reduced by 3.28 log CFU in immunized mice. This study shows that nasal vaccination with BtaF+c-di-AMP protects against intragastric challenge with B. suis by inducing local and systemic antibody responses, central memory CD4+ T cells and strong Th1 responses. Therefore, although BtaF vaccination did not protect from B. suis respiratory infection, this adhesin constitutes a promising immunogen against mucosal B. suis infection.


Asunto(s)
Adhesinas Bacterianas/genética , Antígenos Bacterianos/inmunología , Brucella suis/fisiología , Brucelosis/inmunología , Brucelosis/microbiología , Inmunidad Adaptativa , Adhesinas Bacterianas/metabolismo , Administración Intranasal , Animales , Linfocitos T CD4-Positivos , Fosfatos de Dinucleósidos/metabolismo , Femenino , Humanos , Inmunidad Mucosa/inmunología , Inmunización/métodos , Ratones , Virulencia
7.
Molecules ; 24(12)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234313

RESUMEN

Oligonucleotides are key compounds widely used for research, diagnostics, and therapeutics. The rapid increase in oligonucleotide-based applications, together with the progress in nucleic acids research, has led to the design of nucleotide analogs that, when part of these oligomers, enhance their efficiency, bioavailability, or stability. One of the most useful nucleotide analogs is the first-generation bridged nucleic acids (BNA), also known as locked nucleic acids (LNA), which were used in combination with ribonucleotides, deoxyribonucleotides, or other analogs to construct oligomers with diverse applications. However, there is still room to improve their efficiency, bioavailability, stability, and, importantly, toxicity. A second-generation BNA, BNANC (2'-O,4'-aminoethylene bridged nucleic acid), has been recently made available. Oligomers containing these analogs not only showed less toxicity when compared to LNA-containing compounds but, in some cases, also exhibited higher specificity. Although there are still few applications where BNANC-containing compounds have been researched, the promising results warrant more effort in incorporating these analogs for other applications. Furthermore, newer BNA compounds will be introduced in the near future, offering great hope to oligonucleotide-based fields of research and applications.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Oligonucleótidos/química , Etilenos/química
8.
Sci Rep ; 9(1): 2158, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770847

RESUMEN

Brucella species are Gram-negative, facultative intracellular pathogens responsible for a worldwide zoonosis. The envelope of Brucella exhibits unique characteristics that make these bacteria furtive pathogens and resistant to several host defence compounds. We have identified a Brucella suis gene (mapB) that appeared to be crucial for cell envelope integrity. Indeed, the typical resistance of Brucella to both lysozyme and the cationic lipopeptide polymyxin B was markedly reduced in a ∆mapB mutant. MapB turned out to represent a TamB orthologue. This last protein, together with TamA, a protein belonging to the Omp85 family, form a complex that has been proposed to participate in the translocation of autotransporter proteins across the outer membrane (OM). Accordingly, we observed that MapB is required for proper assembly of an autotransporter adhesin in the OM, as most of the autotransporter accumulated in the mutant cell periplasm. Both assessment of the relative amounts of other specific outer membrane proteins (OMPs) and a proteome approach indicated that the absence of MapB did not lead to an extensive alteration in OMP abundance, but to a reduction in the relative amounts of a protein subset, including proteins from the Omp25/31 family. Electron microscopy revealed that ∆mapB cells exhibit multiple anomalies in cell morphology, indicating that the absence of the TamB homologue in B. suis severely affects cell division. Finally, ∆mapB cells were impaired in macrophage infection and showed an attenuated virulence phenotype in the mouse model. Collectively, our results indicate that the role of B. suis TamB homologue is not restricted to participating in the translocation of autotransporters across the OM but that it is essential for OM stability and protein composition and that it is involved in cell envelope biogenesis, a process that is inherently coordinated with cell division.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Brucella suis/crecimiento & desarrollo , División Celular , Membrana Celular/metabolismo , Pared Celular/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Brucella suis/genética , Brucella suis/metabolismo , Brucella suis/ultraestructura , Brucelosis/microbiología , Brucelosis/patología , Línea Celular , Modelos Animales de Enfermedad , Eliminación de Gen , Macrófagos/microbiología , Ratones , Microscopía Electrónica de Transmisión , Virulencia , Factores de Virulencia/genética
9.
Front Microbiol ; 9: 2408, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30349524

RESUMEN

The bacterial ribonuclease P or RNase P holoenzyme is usually composed of a catalytic RNA subunit, M1, and a cofactor protein, C5. This enzyme was first identified for its role in maturation of tRNAs by endonucleolytic cleavage of the pre-tRNA. The RNase P endonucleolytic activity is characterized by having structural but not sequence substrate requirements. This property led to development of EGS technology, which consists of utilizing a short antisense oligonucleotide that when forming a duplex with a target RNA induces its cleavage by RNase P. This technology is being explored for designing therapies that interfere with expression of genes, in the case of bacterial infections EGS technology could be applied to target essential, virulence, or antibiotic resistant genes. Acinetobacter baumannii is a problematic pathogen that is commonly resistant to multiple antibiotics, and EGS technology could be utilized to design alternative therapies. To better understand the A. baumannii RNase P we first identified and characterized the catalytic subunit. We identified a gene coding for an RNA species, M1Ab, with the expected features of the RNase P M1 subunit. A recombinant clone coding for M1Ab complemented the M1 thermosensitive mutant Escherichia coli BL21(DE3) T7A49, which upon transformation was able to grow at the non-permissive temperature. M1Ab showed in vitro catalytic activity in combination with the C5 protein cofactor from E. coli as well as with that from A. baumannii, which was identified, cloned and partially purified. M1Ab was also able to cleave a target mRNA in the presence of an EGS with efficiency comparable to that of the E. coli M1, suggesting that EGS technology could be a viable option for designing therapeutic alternatives to treat multiresistant A. baumannii infections.

10.
Mol Plant Microbe Interact ; 31(10): 1075-1082, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30136892

RESUMEN

Bacterial surface molecules are crucial for the establishment of a successful rhizobia-legume symbiosis, and, in most bacteria, are also critical for adherence properties, surface colonization, and as a barrier for defense. Rhizobial mutants defective in the production of exopolysaccharides (EPSs), lipopolysaccharides (LPSs), or capsular polysaccharides are usually affected in symbiosis with their plant hosts. In the present study, we evaluated the role of the combined effects of LPS and EPS II in cell-to-cell and cell-to-surface interactions in Sinorhizobium meliloti by studying planktonic cell autoaggregation, biofilm formation, and symbiosis with the host plant Medicago sativa. The lpsB mutant, which has a defective core portion of LPS, exhibited a reduction in biofilm formation on abiotic surfaces as well as altered biofilm architecture compared with the wild-type Rm8530 strain. Atomic force microscopy and confocal laser microscopy revealed an increase in polar cell-to-cell interactions in the lpsB mutant, which might account for the biofilm deficiency. However, a certain level of biofilm development was observed in the lpsB strain compared with the EPS II-defective mutant strains. Autoaggregation experiments carried out with LPS and EPS mutant strains showed that both polysaccharides have an impact on the cell-to-cell adhesive interactions of planktonic bacteria. Although the lpsB mutation and the loss of EPS II production strongly stimulated early attachment to alfalfa roots, the number of nodules induced in M. sativa was not increased. Taken together, this work demonstrates that S. meliloti interactions with biotic and abiotic surfaces depend on the interplay between LPS and EPS II.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica/fisiología , Manosiltransferasas/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiología , Adhesión Bacteriana , Proteínas Bacterianas/genética , Manosiltransferasas/genética , Mutación
11.
PLoS One ; 13(7): e0200651, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30001428

RESUMEN

No-tillage crop production has revolutionized the agriculture worldwide. In our country more than 30 Mha are currently cultivated under no-till schemes, stressing the importance of this management system for crop production. It is widely recognized that soil microbiota is altered under different soil managements. In this regard the structure of Burkholderia populations is affected by soils management practices such as tillage, fertilization, or crop rotation. The stability of these structures, however, has not been evaluated under sustainable schemes where the impact of land practices could be less deleterious to physicochemical soils characteristics. In order to assess the structure of Burkholderia spp. populations in no-till schemes, culturable Burkholderia spp. strains were quantified and their biodiversity evaluated. Results showed that Burkholderia spp. biodiversity, but not their abundance, clearly displayed a dependence on agricultural managements. We also showed that biodiversity was mainly influenced by two soil factors: Total Organic Carbon and Total Nitrogen. Results showed that no-till schemes are not per se sufficient to maintain a richer Burkholderia spp. soil microbiota, and additional traits should be considered when sustainability of productive soils is a goal to fulfil productive agricultural schemes.


Asunto(s)
Biodiversidad , Burkholderia , Producción de Cultivos , Microbiología del Suelo , Suelo , Argentina , Burkholderia/clasificación , Burkholderia/crecimiento & desarrollo , Burkholderia/aislamiento & purificación
12.
Methods Mol Biol ; 1737: 89-98, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29484589

RESUMEN

RNase P is a ribozyme consisting of a catalytic RNA molecule and, depending on the organism, one or more cofactor proteins. It was initially identified as the enzyme that mediates cleavage of precursor tRNAs at the 5'-end termini to generate the mature tRNAs. An important characteristic of RNase P is that its specificity depends on the structure rather than the sequence of the RNA substrate. Any RNA species that interacts with an antisense molecule (called external guide sequence, EGS) and forms the appropriate structure can be cleaved by RNase P. This property is the basis for EGS technology, an antisense methodology for inhibiting gene expression by eliciting RNase P-mediated cleavage of a target mRNA molecule. EGS technology is being developed to design therapies against a large variety of diseases. An essential milestone in developing EGSs as therapies is the assessment of the efficiency of antisense molecules to induce cleavage of the target mRNA and evaluate their effect in vivo. Here, we describe simple protocols to test the ability of EGSs to induce cleavage of a target mRNA in vitro and to induce a phenotypic change in growing cells.


Asunto(s)
Bacterias/genética , Péptidos de Penetración Celular/farmacología , Oligorribonucleótidos Antisentido/metabolismo , ARN Bacteriano/metabolismo , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/metabolismo , Ribonucleasa P/metabolismo , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana , Oligorribonucleótidos Antisentido/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Bacteriano/genética , ARN Guía de Kinetoplastida/genética , ARN Mensajero/genética
13.
Int J Syst Evol Microbiol ; 68(1): 14-20, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29095137

RESUMEN

Bacteria from the Burkholderia cepacia complex (Bcc) are capable of causing severe infections in patients with cystic fibrosis (CF). These opportunistic pathogens are also widely distributed in natural and man-made environments. After a 12-year epidemiological surveillance involving Bcc bacteria from respiratory secretions of Argentinean patients with CF and from hospital settings, we found six isolates of the Bcc with a concatenated species-specific allele sequence that differed by more than 3 % from those of the Bcc with validly published names. According to the multilocus sequence analysis (MLSA), these isolates clustered with the agricultural soil strain, Burkholderia sp. PBP 78, which was already deposited in the PubMLST database. The isolates were examined using a polyphasic approach, which included 16S rRNA, recA, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), DNA base composition, average nucleotide identities (ANIs), fatty acid profiles, and biochemical characterizations. The results of the present study demonstrate that the seven isolates represent a single novel species within the Bcc, for which the name Burkholderia puraquae sp. nov. is proposed. Burkholderia puraquae sp. nov. CAMPA 1040T (=LMG 29660T=DSM 103137T) was designated the type strain of the novel species, which can be differentiated from other species of the Bcc mainly from recA gene sequence analysis, MLSA, ANIb, MALDI-TOF MS analysis, and some biochemical tests, including the ability to grow at 42 °C, aesculin hydrolysis, and lysine decarboxylase and ß-galactosidase activities.


Asunto(s)
Complejo Burkholderia cepacia/clasificación , Fibrosis Quística/microbiología , Filogenia , Microbiología del Suelo , Agricultura , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Humanos , Tipificación de Secuencias Multilocus , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Esputo
14.
Nucleic Acids Res ; 45(10): 5757-5769, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28334833

RESUMEN

LuxR-type transcription factors control diverse physiological functions necessary for bacterial adaptation to environmental changes. In the intracellular pathogen Brucella, the LuxR homolog VjbR has been shown to regulate the expression of virulence factors acting at early stages of the intracellular infection and, directly or indirectly, hundreds of additional genes. However, the precise determination of VjbR direct targets has so far proved elusive. Here, we performed chromatin immunoprecipitation of VjbR followed by next-generation sequencing (ChIP-seq). We detected a large amount of VjbR-binding sites distributed across the Brucella genome and determined a markedly asymmetric binding consensus motif, an unusual feature among LuxR-type regulators. RNA-seq analysis performed under conditions mimicking the eukaryotic intracellular environment revealed that, among all loci associated to VjbR-binding, this regulator directly modulated the expression of only a subset of genes encoding functions consistent with an intracellular adaptation strategy for survival during the initial stages of the host cell infection. Other VjbR-binding events, however, showed to be dissociated from transcription and may require different environmental signals to produce a transcriptional output. Taken together, our results bring new insights into the extent and functionality of LuxR-type-related transcriptional networks.


Asunto(s)
Proteínas Bacterianas/genética , Brucella abortus/genética , Brucella abortus/patogenicidad , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Proteínas Represoras/genética , Transactivadores/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Brucella abortus/metabolismo , Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Motivos de Nucleótidos , Unión Proteica , Percepción de Quorum/genética , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Virulencia
15.
Mol Microbiol ; 103(3): 553-565, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27862467

RESUMEN

Regulatory network plasticity is a key attribute underlying changes in bacterial gene expression and a source of phenotypic diversity to interact with the surrounding environment. Here, we sought to study the transcriptional circuit of HutC, a regulator of both metabolic and virulence genes of the facultative intracellular pathogen Brucella. Using in silico and biochemical approaches, we identified a novel functional HutC-binding site upstream of btaE, a trimeric-autotransporter adhesin involved in the attachment of Brucella to host extracellular matrix components. Moreover, we identified two additional regulators, one of which, MdrA, acts in concert with HutC to exert a combinatorial control of both btaE promoter activity and attachment of Brucella to HeLa cells. Analysis of btaE promoter sequences of different species indicated that this HutC-binding site was generated de novo by a single point mutation in a virulent Brucella strain, indicative of a transcriptional rewiring event. In addition to major domain organization differences existing between BtaE proteins within the genus Brucella, our analyses revealed that sequences upstream of btaE display high variability probably associated to intrinsic promoter structural features, which may serve as a substrate for reciprocal selection during co-evolution between this pathogen and its mammalian host.


Asunto(s)
Brucella abortus/genética , Brucella abortus/metabolismo , Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases/genética , Sitios de Unión/genética , Brucella abortus/fisiología , Biología Computacional/métodos , Matriz Extracelular/microbiología , Regulación Bacteriana de la Expresión Génica/genética , Genes Bacterianos/genética , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Sistemas de Secreción Tipo V/metabolismo , Virulencia/fisiología
16.
Biol Methods Protoc ; 1(1)2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27857983

RESUMEN

EGSs (external guide sequences) are short antisense oligoribonucleotides that elicit RNase P-mediated cleavage of a target mRNA, which results in inhibition of gene expression. EGS technology is used to inhibit expression of a wide variety of genes, a strategy that may lead to development of novel treatments of numerous diseases, including multidrug-resistant bacterial and viral infections. Successful development of EGS technology depends on finding nucleotide analogs that resist degradation by nucleases present in biological fluids and the environment but still elicit RNase P-mediated degradation when forming a duplex with a target mRNA. Previous results suggested that locked nucleic acids (LNA)/DNA chimeric oligomers have these properties. LNA are now considered the first generation of compounds collectively known as bridged nucleic acids (BNA), modified ribonucleotides that contain a bridge at the 2',4'-position of the ribose. LNA and the second generation BNA, known as BNANC, differ in the chemical nature of the bridge. Chimeric oligomers containing LNA or BNANC and deoxynucleotide monomers in different configurations are nuclease resistant and could be excellent EGS compounds. However, not all configurations may be equally active as EGSs. RNase P cleavage assays comparing LNA/DNA and BNANC/DNA chimeric oligonucleotides that share identical nucleotide sequence but with different configurations were carried out using as target the amikacin resistance aac(6')-Ib mRNA. LNA/DNA gapmers with 5 and 3/4 LNA residues at the 5'- and 3'-ends, respectively, were the most efficient EGSs while all BNANC/DNA gapmers showed very poor activity. When the most efficient LNA/DNA gapmer was covalently bound to a cell penetrating peptide (CPP), the hybrid compound conserved the EGS activity as determined by RNase P cleavage assays and reduced the levels of resistance to amikacin when added to Acinetobacter baumannii cells in culture, an indication of cellular uptake and biological activity.

17.
Front Microbiol ; 7: 1608, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27790205

RESUMEN

In natural environments most bacteria live in multicellular structures called biofilms. These cell aggregates are enclosed in a self-produced polymeric extracellular matrix, which protects the cells, provides mechanical stability and mediates cellular cohesion and adhesion to surfaces. Although important advances were made in the identification of the genetic and extracellular factors required for biofilm formation, the mechanisms leading to biofilm matrix assembly, and the roles of extracellular proteins in these processes are still poorly understood. The symbiont Rhizobium leguminosarum requires the synthesis of the acidic exopolysaccharide and the PrsDE secretion system to develop a mature biofilm. PrsDE is responsible for the secretion of the Rap family of proteins that share one or two Ra/CHDL (cadherin-like-) domains. RapA2 is a calcium-dependent lectin with a cadherin-like ß sheet structure that specifically recognizes the exopolysaccharide, either as a capsular polysaccharide (CPS) or in its released form [extracellular polysaccharide (EPS)]. In this study, using gain and loss of function approaches combined with phenotypic and microscopic studies we demonstrated that RapA lectins are involved in biofilm matrix development and cellular cohesion. While the absence of any RapA protein increased the compactness of bacterial aggregates, high levels of RapA1 expanded distances between cells and favored the production of a dense matrix network. Whereas endogenous RapA(s) are predominantly located at one bacterial pole, we found that under overproduction conditions, RapA1 surrounded the cell in a way that was reminiscent of the capsule. Accordingly, polysaccharide analyses showed that the RapA lectins promote CPS formation at the expense of lower EPS production. Besides, polysaccharide analysis suggests that RapA modulates the EPS size profile. Collectively, these results show that the interaction of RapA lectins with the polysaccharide is involved in rhizobial biofilm matrix assembly and remodeling.

18.
Environ Microbiol ; 18(10): 3522-3534, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27198923

RESUMEN

A main goal of biological nitrogen fixation research has been to expand the nitrogen-fixing ability to major cereal crops. In this work, we demonstrate the use of the efficient nitrogen-fixing rhizobacterium Pseudomonas protegens Pf-5 X940 as a chassis to engineer the transfer of nitrogen fixed by BNF to maize and wheat under non-gnotobiotic conditions. Inoculation of maize and wheat with Pf-5 X940 largely improved nitrogen content and biomass accumulation in both vegetative and reproductive tissues, and this beneficial effect was positively associated with high nitrogen fixation rates in roots. 15 N isotope dilution analysis showed that maize and wheat plants obtained substantial amounts of fixed nitrogen from the atmosphere. Pf-5 X940-GFP-tagged cells were always reisolated from the maize and wheat root surface but never from the inner root tissues. Confocal laser scanning microscopy confirmed root surface colonization of Pf-5 X940-GFP in wheat plants, and microcolonies were mostly visualized at the junctions between epidermal root cells. Genetic analysis using biofilm formation-related Pseudomonas mutants confirmed the relevance of bacterial root adhesion in the increase in nitrogen content, biomass accumulation and nitrogen fixation rates in wheat roots. To our knowledge, this is the first report of robust BNF in major cereal crops.


Asunto(s)
Inoculantes Agrícolas/fisiología , Productos Agrícolas/microbiología , Fijación del Nitrógeno , Nitrógeno/metabolismo , Pseudomonas/fisiología , Inoculantes Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Pseudomonas/genética , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Triticum/microbiología , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Zea mays/microbiología
19.
Genome Announc ; 3(5)2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26494680

RESUMEN

Bacteria of the genus Burkholderia are commonly found in diverse ecological niches in nature. We report here the draft genome sequence of Burkholderia cordobensis type strain LMG 27620, isolated from agricultural soil in Córdoba, Argentina. This strain harbors several genes involved in chitin utilization and phenol degradation, which make it an interesting candidate for biocontrol purposes and xenobiotic degradation in polluted environments.

20.
Ann N Y Acad Sci ; 1354: 98-110, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25866265

RESUMEN

RNase P is a ribozyme originally identified for its role in maturation of tRNAs by cleavage of precursor tRNAs (pre-tRNAs) at the 5'-end termini. RNase P is a ribonucleoprotein consisting of a catalytic RNA molecule and, depending on the organism, one or more cofactor proteins. The site of cleavage of a pre-tRNA is identified by its tertiary structure; and any RNA molecule can be cleaved by RNase P as long as the RNA forms a duplex that resembles the regional structure in the pre-tRNA. When the antisense sequence that forms the duplex with the strand that is subsequently cleaved by RNase P is in a separate molecule, it is called an external guide sequence (EGS). These fundamental observations are the basis for EGS technology, which consists of inhibiting gene expression by utilizing an EGS that elicits RNase P-mediated cleavage of a target mRNA molecule. EGS technology has been used to inhibit expression of a wide variety of genes, and may help development of novel treatments of diseases, including multidrug-resistant bacterial and viral infections.


Asunto(s)
Oligorribonucleótidos Antisentido/metabolismo , ARN Bacteriano/metabolismo , ARN Catalítico/metabolismo , Ribonucleasa P/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/prevención & control , Humanos , Modelos Genéticos , Conformación de Ácido Nucleico , Oligorribonucleótidos Antisentido/genética , ARN Bacteriano/química , ARN Bacteriano/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...