Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 880: 163262, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37023808

RESUMEN

The current highest glacial lake outburst floods (GLOFs) risk level is centered in the eastern Himalaya. GLOFs represent a serious threat to downstream inhabitants and ecological environment. In the context of climate warming on the Tibetan Plateau, such GLOFs will continue or even intensify in the future. Remote sensing and statistical methods are often used to diagnose glacial lakes with the highest outburst probability. These methods are efficient in large-scale glacial lake risk assessment but do not take into consideration the complexity of specific glacial lake dynamics and triggering factor uncertainty. Therefore, we explored a novel approach to integrate geophysics, remote sensing, and numerical simulation in glacial lake and GLOF disaster chain assessments. In particular, geophysical techniques are rarely applied to the exploration of glacial lakes. The Namulacuo Lake located in the southeastern Tibetan Plateau is considered as the experimental site. The current status of the lake, including landform construction and identifying potential triggering factors, was first investigated. Secondly, the outburst process and disaster chain effect were evaluated by numerical simulation based on the multi-phase modeling frame proposed by Pudasaini and Mergili (2019) implemented in the open source computational tool r.avaflow. The results allowed verifying that the Namulacuo Lake dam was a landslide dam with an obvious layered structure. Also, the piping-induced flood might have more severe consequences than the short-term ultra-high discharge flood caused by surge. The blocking event caused by a surge disappeared faster than that caused by piping. Therefore, this comprehensive diagnostic approach can assist GLOF researchers to increase their understanding of key challenges they are facing regarding GLOF mechanisms.

2.
Sci Total Environ ; 836: 155380, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35489509

RESUMEN

Upsurge of glacier-related hazards in High Mountain Asia (HMA) has been evident in recent years due to global warming. While many glacial-related hazards are instantaneous, some large landslides were preceded by slow gravitational deformation, which can be predicted to evade catastrophes. Here, we present robust evidence of historical deformation in 2021 Chamoli rock-ice avalanche of Himalaya using space imaging techniques. Multi-temporal satellite data provide evidence of a precursor event in 2016 and expansion of a linear fracture along joint planes, indicating 2021 rock-ice avalanche is a retrogressive wedge failure. The deformation history shows that the fracture propagated at a velocity of ~0.07 m day-1 until September 2020, and with an accelerated velocity (~0.14 m day-1 on average) lately. Analysis of recent similar cases in HMA supported our inference on global warming-induced glacier retreat and thermomechanical effects in enhancing the weakening of fractured rock masses in tectonically active mountain belts. Recent advances in Earth observation and seismic monitoring system can offer clues to the location and timing of impending catastrophic failures in high mountain regions.


Asunto(s)
Avalanchas , Deslizamientos de Tierra , Asia , Calentamiento Global , Cubierta de Hielo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA