Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Kidney Int ; 91(2): 375-386, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27745702

RESUMEN

Cytokines IL-4 and IL-13 play important roles in polarization of macrophages/dendritic cells to an M2 phenotype, which is important for recovery from acute kidney injury. Both IL-4 and IL-13 activate JAK3/STAT6 signaling. In mice with diphtheria toxin receptor expression in proximal tubules (selective injury model), a relatively selective JAK3 inhibitor, tofacitinib, led to more severe kidney injury, delayed recovery from acute kidney injury, increased inflammatory M1 phenotype markers and decreased reparative M2 phenotype markers of macrophages/dendritic cells, and development of more severe renal fibrosis after diphtheria toxin administration. Similarly, there was delayed recovery and increased tubulointerstitial fibrosis in these diphtheria toxin-treated mice following tamoxifen-induced deletion of both IL-4 and IL-13, with increased levels of M1 and decreased levels of M2 markers in the macrophages/dendritic cells. Furthermore, deletion of IL-4 and IL-13 led to a decrease of tissue reparative M2a phenotype markers but had no effect on anti-inflammatory M2c phenotype markers. Deletion of IL-4 and IL-13 also inhibited recovery from ischemia-reperfusion injury in association with increased M1 and decreased M2 markers and promoted subsequent tubulointerstitial fibrosis. Thus, IL-4 and IL-13 are required to effectively polarize macrophages/dendritic cells to an M2a phenotype and to promote recovery from acute kidney injury.


Asunto(s)
Lesión Renal Aguda/metabolismo , Plasticidad de la Célula , Células Dendríticas/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Riñón/metabolismo , Macrófagos/metabolismo , Daño por Reperfusión/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Lesión Renal Aguda/fisiopatología , Animales , Células Dendríticas/patología , Toxina Diftérica , Modelos Animales de Enfermedad , Fibrosis , Genotipo , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Interleucina-13/deficiencia , Interleucina-13/genética , Interleucina-4/deficiencia , Interleucina-4/genética , Janus Quinasa 3/metabolismo , Riñón/patología , Riñón/fisiopatología , Macrófagos/patología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Noqueados , Fenotipo , Recuperación de la Función , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Daño por Reperfusión/fisiopatología , Factor de Transcripción STAT6/metabolismo , Transducción de Señal , Factores de Tiempo
2.
J Biol Chem ; 286(52): 44606-19, 2011 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-22069332

RESUMEN

The cardiomyocyte circadian clock directly regulates multiple myocardial functions in a time-of-day-dependent manner, including gene expression, metabolism, contractility, and ischemic tolerance. These same biological processes are also directly influenced by modification of proteins by monosaccharides of O-linked ß-N-acetylglucosamine (O-GlcNAc). Because the circadian clock and protein O-GlcNAcylation have common regulatory roles in the heart, we hypothesized that a relationship exists between the two. We report that total cardiac protein O-GlcNAc levels exhibit a diurnal variation in mouse hearts, peaking during the active/awake phase. Genetic ablation of the circadian clock specifically in cardiomyocytes in vivo abolishes diurnal variations in cardiac O-GlcNAc levels. These time-of-day-dependent variations appear to be mediated by clock-dependent regulation of O-GlcNAc transferase and O-GlcNAcase protein levels, glucose metabolism/uptake, and glutamine synthesis in an NAD-independent manner. We also identify the clock component Bmal1 as an O-GlcNAc-modified protein. Increasing protein O-GlcNAcylation (through pharmacological inhibition of O-GlcNAcase) results in diminished Per2 protein levels, time-of-day-dependent induction of bmal1 gene expression, and phase advances in the suprachiasmatic nucleus clock. Collectively, these data suggest that the cardiomyocyte circadian clock increases protein O-GlcNAcylation in the heart during the active/awake phase through coordinated regulation of the hexosamine biosynthetic pathway and that protein O-GlcNAcylation in turn influences the timing of the circadian clock.


Asunto(s)
Relojes Circadianos/fisiología , Glicoproteínas/metabolismo , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Glicoproteínas/genética , Glicosilación , Masculino , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Miocardio/citología , Miocitos Cardíacos/citología , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA