Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(17): 4640-4646, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38647347

RESUMEN

Photocatalytic conversions of ethanol to valuable chemicals are significant organic synthesis reactions. Herein, we developed a CuCl2/FeCl3 bimetallic photocatalyst for sustainable dehydration of ethanol to ethylene by recoverable redox cycles. The selectivity of ethylene was 98.3% for CuCl2/FeCl3, which is much higher than that of CuCl2 (34.5%) and FeCl3 (86.5%). Due to the ligand-to-metal charge transfer (LMCT) process involved in generating the liquid products, the CuCl2/FeCl3 catalyst will be reduced to CuCl/FeCl2. Oxygen (O2) is required for the recovery of CuCl2/FeCl3 to avoid exhaustion. The soluble Fe3+/Fe2+ redox species deliver catalyst regeneration properties more efficiently than single metal couples, making a series of redox reactions (Cu2+/Cu+, Fe3+/Fe2+, and O2/ethanol couples) recyclable with synergistic effects. A flow reactor was designed to facilitate the continuous production of ethylene. The understanding of bimetallic synergism and consecutive reactions promotes the industrial application process of photocatalytic organic reactions.

2.
Small ; : e2312265, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38415951

RESUMEN

The preparation of perovskite components (PbI2 and SnI2 ) using waste materials is of great significance for the commercialization of perovskite solar cells (PSCs). However, this goal is difficult to achieve due to the purity of the recovered products and the easy oxidation of Sn2+ . Here, a simple one-step synthetic process to convert waste Sn-Pb solder into SnI2 /PbI2 and then applied as-prepared SnI2 /PbI2 to PSCs for high additional value is adopted. During fabrication, Sn-Pb waste solder is also employed to serve as a reducing agent to reduce the Sn4+ in Sn-Pb mixed narrow perovskite precursor and hence remove the deep trap states in perovskite. The target PSCs achieved an efficiency of 21.04%, which is better than the efficiency of the device with commercial SnI2 /PbI2 (20.10%). Meanwhile, the target PSC maintained an initial efficiency of 80% even after 800 h under continuous illumination, which is significantly better than commercial devices. In addition, the method achieved a recovery rate of 90.12% for Sn-Pb waste solder, with a lab-grade purity (over 99.8%) for SnI2 /PbI2 , and the cost of perovskite active layer reduced to 39.81% through this recycling strategy through calculation.

3.
Adv Mater ; 35(26): e2300503, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36995983

RESUMEN

Inorganic CsSnI3 with low toxicity and a narrow bandgap is a promising photovoltaic material. However, the performance of CsSnI3 perovskite solar cells (PSCs) is much lower than that of Pb-based and hybrid Sn-based (e.g., CsPbX3 and CH(NH2 )2 SnX3 ) PSCs, which may be attributed to its poor film-forming property and the deep traps induced by Sn4+ . Here, a bifunctional additive carbazide (CBZ) is adapted to deposit a pinhole-free film and remove the deep traps via two-step annealing. The lone electrons of the NH2 and CO units in CBZ can coordinate with Sn2+ to form a dense film with large grains during the phase transition at 80 °C. The decomposition of CBZ can reduce Sn4+ to Sn2+ during annealing at 150 °C to remove the deep traps. Compared with the control device (4.12%), the maximum efficiency of the CsSnI3 :CBZ PSC reaches 11.21%, which is the highest efficiency of CsSnI3 PSC reported to date. A certified efficiency of 10.90% is obtained by an independent photovoltaic testing laboratory. In addition, the unsealed CsSnI3 :CBZ devices maintain initial efficiencies of ≈100%, 90%, and 80% under an inert atmosphere (60 days), standard maximum power point tracking (650 h at 65 °C), and ambient air (100 h), respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...