Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 918: 170626, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325482

RESUMEN

Nanoplastics are widely used across various fields, yet their uptake can potentially exert adverse effects on plant growth and development, ultimately reducing yields. While there is growing awareness of the phytotoxicity caused by nanoplastics, our understanding of effective strategies to prevent nanoplastic accumulation in plants remains limited. This study explores the role of strigolactones (SLs) in mitigating the toxicity of polystyrene nanoplastics (PS-NPs) in Zea mays L. (maize). SLs application markedly inhibited PS-NPs accumulation in maize roots, thus enhancing the root weight, shoot weight and shoot length of maize. Physiological analysis showed that SLs application activated the activities of antioxidant defence enzymes, superoxide dismutase and catalase, to decrease the malondialdehyde content and electrolyte leakage and alleviate the accumulation of H2O2 and O2.- induced by PS-NPs in maize plants. Transcriptomic analyses revealed that SLs application induced transcriptional reprogramming by regulating the expression of genes related to MAPK, plant hormones and plant-pathogen interaction signal pathways in maize treated with PS-NPs. Notably, the expression of genes, such as ZmAUX/IAA and ZmGID1, associated with phytohormones in maize treated with PS-NPs underwent significant changes. In addition, SLs induced metabolic dynamics changes related to amino acid biosynthesis, ABC transporters, cysteine and methionine metabolism in maize treated with PS-NPs. In summary, these results strongly reveal that SLs could serve as a strategy to mitigate the accumulation and alleviate the stress of PS-NPs in maize, which appears to be a potential approach for mitigating the phytotoxicity induced by PS-NPs in maize.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos , Lactonas , Microplásticos , Zea mays , Zea mays/metabolismo , Microplásticos/metabolismo , Raíces de Plantas/metabolismo , Poliestirenos/toxicidad , Poliestirenos/metabolismo , Peróxido de Hidrógeno/farmacología
2.
Plant Physiol Biochem ; 199: 107719, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37148659

RESUMEN

Heat stress severely inhibits plant growth and limits crop yields. Thus, it is crucial to identify genes that are associated with plant heat stress responses. Here, we report a maize (Zea mays L.) gene, N-acetylglutamate kinase (ZmNAGK), that positively enhances plant heat stress tolerance. The ZmNAGK expression level was significantly up-regulated by heat stress in maize plants, and ZmNAGK was found to be localized in maize chloroplasts. Phenotypic analysis showed that overexpressing of ZmNAGK enhanced the tolerance of tobacco to heat stress both in the seed germination and seedling growth stages. Further physiological analysis showed that ZmNAGK overexpression in tobacco could alleviate oxidative damages that occurred during heat stress via activation of antioxidant defense signaling. Transcriptome analysis revealed that ZmNAGK could modulate the expression of antioxidant-enzyme encoding genes, such as ascorbate peroxidase 2 (APX2) and superoxide dismutase C (SODC), and heat shock network genes. Taken together, we have identified a maize gene that can provide plants with heat tolerance through the induction of antioxidant-associated defense signaling.


Asunto(s)
Antioxidantes , Termotolerancia , Antioxidantes/metabolismo , Nicotiana/metabolismo , Termotolerancia/genética , Plantas Modificadas Genéticamente/genética , Respuesta al Choque Térmico , Zea mays/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
J Plant Physiol ; 275: 153763, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35839657

RESUMEN

Apetala2/ethylene response factor (AP2/ERF) family of transcription factors plays important roles in plant development and stress responses. However, few members of this family have been functionally and mechanistically characterised in maize. In this study, we characterised a member of the AP2/ERF transcription factor family, ZmEREBP60 from maize. Amino acid sequence alignment and phylogenetic analysis showed that ZmEREBP60 belongs to cluster I of the AP2/ERF family. qRT-PCR analysis indicated that ZmEREBP60 expression was highly induced by drought in the roots, coleoptiles, and leaves. Subcellular localisation analysis revealed that ZmEREBP60 was localised in the nucleus. Moreover, overexpression of ZmEREBP60 enhanced tolerance to drought stress while alleviating the drought-induced increase in H2O2 accumulation and malondialdehyde content in transgenic lines. Transcriptome analysis showed that ZmEREBP60 regulates the expression of genes involved in H2O2 catabolism, water deprivation response, and abscisic acid signalling pathway. Collectively, as a new member of the AP2/ERF transcription factor family in maize, ZmEREBP60 is a positive regulator of plant drought response.


Asunto(s)
Sequías , Zea mays , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Zea mays/genética , Zea mays/metabolismo
4.
Anal Bioanal Chem ; 413(5): 1313-1320, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33404744

RESUMEN

This study aimed to use micro-FTIR with transmission mode to investigate cellulose crystallinity of developing cotton fibers. Compared with ATR-FTIR method, we found that micro-FTIR can obtain more information of cellulose inside of the developing cotton fibers, especially in high wavenumber of 2800-3000 cm-1 region. Combined with curve fitting method, a new IR crystallinity index (CI) method named wax crystallinity index (WCI) was introduced to evaluate the cellulose crystallinity in the development of cotton fibers based on the peak and area ratios of 2900 cm-1/2850 cm-1 and 2900 cm-1/2920 cm-1. The obtained WCI values demonstrated an excellent coefficient of determination with X-ray diffraction (XRD) CI method with the value up to 0.99. This study suggested that micro-FTIR was an effective technique to qualitatively analyze the crystallinity in developing cotton fibers combined with curve fitting method.


Asunto(s)
Celulosa/análisis , Fibra de Algodón/análisis , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Cristalización , Difracción de Rayos X
5.
Microbes Environ ; 34(3): 310-315, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31447469

RESUMEN

Bacillus pumilus ZB201701 is a rhizobacterium with the potential to promote plant growth and tolerance to drought and salinity stress. We herein present the complete genome sequence of the Gram-positive bacterium B. pumilus ZB201701, which consists of a linear chromosome with 3,640,542 base pairs, 3,608 protein-coding sequences, 24 ribosomal RNAs, and 80 transfer RNAs. Genome analyses using bioinformatics revealed some of the putative gene clusters involved in defense mechanisms. In addition, activity analyses of the strain under salt and simulated drought stress suggested its potential tolerance to abiotic stress. Plant growth-promoting bacteria-based experiments indicated that the strain promotes the salt tolerance of maize. The complete genome of B. pumilus ZB201701 provides valuable insights into rhizobacteria-mediated salt and drought tolerance and rhizobacteria-based solutions for abiotic stress in agriculture.


Asunto(s)
Bacillus pumilus/genética , Sequías , Genoma Bacteriano/genética , Rizosfera , Microbiología del Suelo , Estrés Fisiológico , Zea mays/microbiología , Bacillus pumilus/crecimiento & desarrollo , Bacillus pumilus/fisiología , Salinidad , Tolerancia a la Sal , Suelo/química , Estrés Fisiológico/genética , Zea mays/fisiología
6.
Biochem Biophys Res Commun ; 478(2): 752-8, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27498027

RESUMEN

NUCLEAR FACTOR-Y (NF-Y) has been shown to play an important role in growth, development, and response to environmental stress. A NF-Y complex, which consists of three subunits, NF-YA, NF-YB, and, NF-YC, binds to CCAAT sequences in a promoter to control the expression of target genes. Although NF-Y proteins have been reported in Arabidopsis and rice, a comprehensive and systematic analysis of ZmNF-Y genes has not yet been performed. To examine the functions of ZmNF-Y genes in this family, we isolated and characterized 50 ZmNF-Y (14 ZmNF-YA, 18 ZmNF-YB, and 18 ZmNF-YC) genes in an analysis of the maize genome. The 50 ZmNF-Y genes were distributed on all 10 maize chromosomes, and 12 paralogs were identified. Multiple alignments showed that maize ZmNF-Y family proteins had conserved regions and relatively variable N-terminal or C-terminal domains. The comparative syntenic map illustrated 40 paralogous NF-Y gene pairs among the 10 maize chromosomes. Microarray data showed that the ZmNF-Y genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results suggested that ZmNF-YB2, 4, 8, 10, 13, and 16 and ZmNF-YC6, 8, and 15 were induced, while ZmNF-YA1, 3, 4, 6, 7, 10, 12, and 13, ZmNF-YB15, and ZmNF-YC3 and 9 were suppressed by drought stress. ZmNF-YA3, ZmNF-YA8 and ZmNF-YA12 were upregulated after infection by the three pathogens, while ZmNF-YA1 and ZmNF-YB2 were suppressed. These results indicate that the ZmNF-Ys may have significant roles in the response to abiotic and biotic stresses.


Asunto(s)
Factor de Unión a CCAAT/genética , Cromosomas de las Plantas/química , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Proteínas de Plantas/genética , Zea mays/genética , Secuencia de Aminoácidos , Arabidopsis/clasificación , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Basidiomycota/patogenicidad , Basidiomycota/fisiología , Factor de Unión a CCAAT/clasificación , Secuencia Conservada , Sequías , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Análisis por Micromatrices , Familia de Multigenes , Oryza/clasificación , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/microbiología , Filogenia , Proteínas de Plantas/clasificación , Alineación de Secuencia , Estrés Fisiológico , Sintenía , Zea mays/clasificación , Zea mays/crecimiento & desarrollo , Zea mays/microbiología
7.
Int J Mol Sci ; 14(3): 5025-35, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23455470

RESUMEN

Plant lipid transfer proteins (LTPs) are encoded by multigene families and play important roles in plant physiology. One full-length cDNA encoding an Arabidopsis LTP3 homologue was isolated from maize by RT-PCR and named as ZmLTP3. RT-PCR analysis indicated that the ZmLTP3 expression is induced by salicylic acid (SA), mannitol and salt. Furthermore, in different tissues the ZmLTP3 displayed different expression patterns, indicating that ZmLTP3 may play multiple roles in stress resistance. Over-expression of ZmLTP3 in wild-type Arabidopsis resulted in the increased salt tolerance. Under salt stress condition, compared to wild-type (WT) plants, transgenic Arabidopsis grew better, had higher seedling fresh (FW), dry weight (DW), seed yields, proline content and lower MDA content and relative electric conductivity level. Our results suggest that maize ZmLTP3 might encode a member of LTPs family and play roles in salt resistance.

8.
Curr Biol ; 22(2): 154-9, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22209529

RESUMEN

Many angiosperms use specific interactions between pollen and pistil proteins as "self" recognition and/or rejection mechanisms to prevent self-fertilization. Self-incompatibility (SI) is encoded by a multiallelic S locus, comprising pollen and pistil S-determinants. In Papaver rhoeas, cognate pistil and pollen S-determinants, PrpS, a pollen-expressed transmembrane protein, and PrsS, a pistil-expressed secreted protein, interact to trigger a Ca(2+)-dependent signaling network, resulting in inhibition of pollen tube growth, cytoskeletal alterations, and programmed cell death (PCD) in incompatible pollen. We introduced the PrpS gene into Arabidopsis thaliana, a self-compatible model plant. Exposing transgenic A. thaliana pollen to recombinant Papaver PrsS protein triggered remarkably similar responses to those observed in incompatible Papaver pollen: S-specific inhibition and hallmark features of Papaver SI. Our findings demonstrate that Papaver PrpS is functional in a species with no SI system that diverged ~140 million years ago. This suggests that the Papaver SI system uses cellular targets that are, perhaps, common to all eudicots and that endogenous signaling components can be recruited to elicit a response that most likely never operated in this species. This will be of interest to biologists interested in the evolution of signaling networks in higher plants.


Asunto(s)
Arabidopsis/fisiología , Papaver/genética , Proteínas de Plantas/metabolismo , Autoincompatibilidad en las Plantas con Flores/genética , Actinas/metabolismo , Caspasa 3/metabolismo , Muerte Celular , Péptido Hidrolasas/metabolismo , Polen/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...