Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 10(4)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37106633

RESUMEN

Poly(3-hydroxybutyrate-co-3-hydroxypropionate) [P(3HB-co-3HP)] is a biodegradable and biocompatible polyester with improved and expanded material properties compared with poly(3-hydroxybutyrate) (PHB). This study engineered a robust malonyl-CoA pathway in Cupriavidus necator for the efficient supply of a 3HP monomer, and could achieve the production of [P(3HB-co-3HP)] from variable oil substrates. Flask level experiments followed by product purification and characterization found the optimal fermentation condition (soybean oil as carbon source, 0.5 g/L arabinose as induction level) in general consideration of the PHA content, PHA titer and 3HP molar fraction. A 5 L fed-batch fermentation (72 h) further increased the dry cell weight (DCW) to 6.08 g/L, the titer of [P(3HB-co-3HP)] to 3.11 g/L and the 3HP molar fraction to 32.25%. Further improving the 3HP molar fraction by increasing arabinose induction failed as the engineered malonyl-CoA pathway was not properly expressed under the high-level induction condition. With several promising advantages (broader range of economic oil substrates, no need for expensive supplementations such as alanine and VB12), this study indicated a candidate route for the industrial level production of [P(3HB-co-3HP)]. For future prospects, further studies are needed to further improve the strain and the fermentation process and expand the range of relative products.

2.
Bioengineering (Basel) ; 10(2)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36829716

RESUMEN

Amide bond is often seen in value-added nitrogen-containing heterocyclic compounds, which can present promising chemical, biological, and pharmaceutical significance. However, current synthesis methods in the preparation of amide-containing N-heterocyclic compounds have low specificity (large amount of by-products) and efficiency. In this study, we focused on reviewing the feasible enzymes (nitrogen acetyltransferase, carboxylic acid reductase, lipase, and cutinase) for the amidation of N-heterocyclic compounds; summarizing their advantages and weakness in the specific applications; and further predicting candidate enzymes through in silico structure-functional analysis. For future prospects, current enzymes demand further engineering and improving for practical industrial applications and more enzymatic tools need to be explored and developed for a broader range of N-heterocyclic substrates.

3.
Crit Rev Biotechnol ; 43(4): 503-520, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35430940

RESUMEN

Chemical resources and techniques have long been used in the history of bulk polyester production and still dominate today's chemical industry. The sustainable development of the polyester industry demands more renewable resources and environmentally benign polyester products. Accordingly, the rapid development of biotechnology has enabled the production of an extensive range of aliphatic and aromatic polyesters from renewable bio-feedstocks. This review addresses the production of representative commercial polyesters (polyhydroxyalkanoates, polylactic acid, poly ε-caprolactone, polybutylene succinate, polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, polyethylene furandicarboxylate, polypropylene furandicarboxylate, and polybutylene furandicarboxylate) or their monomers (lactic acid, succinic acid, 1,4-butanediol, ethylene glycol, terephthalic acid, 1,3-propanediol, and 2,5-furandicarboxylic acid) from renewable bioresources. In addition, this review summarizes advanced biotechniques in the treatment of polyester wastes, representing the near-term trends and future opportunities for waste-to-value recycling and the remediation of polyester wastes under sustainable models. For future prospects, it is essential to further expand: non-food bioresources, optimize bioprocesses and biotechniques in the preparation of bioderived or biodegradable polyesters with promising: material performance, biodegradability, and low production cost.


Asunto(s)
Polihidroxialcanoatos , Polipropilenos , Poliésteres , Biotecnología/métodos , Ácido Láctico
4.
Front Bioeng Biotechnol ; 10: 919969, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814019

RESUMEN

Polylactic acid (PLA), a homopolymer of lactic acid (LA), is a bio-derived, biocompatible, and biodegradable polyester. The evolved class II PHA synthase (PhaC1 Ps6-19) was commonly utilized in the de novo biosynthesis of PLA from biomass. This study tested alternative class I PHA synthase (PhaC Cs ) from Chromobacterium sp. USM2 in engineered Escherichia coli for the de novo biosynthesis of PLA from glucose. The results indicated that PhaC Cs had better performance in PLA production than that of class II synthase PhaC1 Ps6-19. In addition, the sulA gene was engineered in PLA-producing strains for morphological engineering. The morphologically engineered strains present increased PLA production. This study also tested fused propionyl-CoA transferase and lactate dehydrogenase A (fused Pct Cp /LdhA) in engineered E. coli and found that fused Pct Cp /LdhA did not apparently improve the PLA production. After systematic engineering, the highest PLA production was achieved by E. coli MS6 (with PhaC Cs and sulA), which could produce up to 955.0 mg/L of PLA in fed-batch fermentation with the cell dry weights of 2.23%, and the average molecular weight of produced PLA could reach 21,000 Da.

6.
Molecules ; 26(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885764

RESUMEN

Lactate and isoprene are two common monomers for the industrial production of polyesters and synthetic rubbers. The present study tested the co-production of D-lactate and isoprene by engineered Escherichia coli in microaerobic conditions. The deletion of alcohol dehydrogenase (adhE) and acetate kinase (ackA) genes, along with the supplementation with betaine, improved the co-production of lactate and isoprene from the substrates of glucose and mevalonate. In fed-batch studies, microaerobic fermentation significantly improved the isoprene concentration in fermentation outlet gas (average 0.021 g/L), compared with fermentation under aerobic conditions (average 0.0009 g/L). The final production of D-lactate and isoprene can reach 44.0 g/L and 3.2 g/L, respectively, through fed-batch microaerobic fermentation. Our study demonstrated a dual-phase production strategy in the co-production of isoprene (gas phase) and lactate (liquid phase). The increased concentration of gas-phase isoprene could benefit the downstream process and decrease the production cost to collect and purify the bio-isoprene from the fermentation outlet gas. The proposed microaerobic process can potentially be applied in the production of other volatile bioproducts to benefit the downstream purification process.


Asunto(s)
Escherichia coli/genética , Hemiterpenos/biosíntesis , Ácido Láctico/biosíntesis , Ingeniería Metabólica , Aerobiosis/genética , Butadienos/química , Escherichia coli/metabolismo , Fermentación , Hemiterpenos/química , Ácido Láctico/química , Ácido Mevalónico/química
7.
Appl Microbiol Biotechnol ; 105(11): 4343-4356, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34021813

RESUMEN

Diversified members of hop bitter acids (α- and ß-acids) have been found in hop (Humulus lupulus). Mixtures of hop bitter acids have been traditionally applied in brewing and food industries as bitterness flavors or food additives. Recent studies have discovered novel applications of hop bitter acids and their derivatives in medicinal and pharmaceutical fields. The increasing demands of purified hop bitter acid promoted biosynthesis efforts for the heterologous biosynthesis of objective hop bitter acids by engineered microbial factories. In this study, the updated information of hop bitter acids and their representative application in brewing, food, and medicine fields are reviewed. We also speculate future trends on the development of robust microbial cell factories and biotechnologies for the biosynthesis of hop bitter acids. KEY POINTS: • Structures and applications of hop bitter acids are summarized in this study. • Biosynthesis of hop bitter acids remains challenging. • We discuss potential strategies in the microbial production of hop bitter acids.


Asunto(s)
Humulus , Ácidos
8.
Mini Rev Med Chem ; 20(4): 331-340, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31644401

RESUMEN

Biopolyesters represent a large family that can be obtained by polymerization of variable bio-derived hydroxyalkanoic acids. The monomer composition, molecular weight of the biopolyesters can affect the properties and applications of the polyesters. The majority of biopolyesters can either be biosynthesized from natural biofeedstocks or semi-synthesized (biopreparation of monomers followed by the chemical polymerization of the monomers). With the fast development of synthetic biology and biosynthesis techniques, the biosynthesis of unnatural biopolyesters (like lactate containing and aromatic biopolyesters) with improved performance and function has been a tendency. The presence of novel preparation methods, novel monomer composition has also significantly affected the properties, functions and applications of the biopolyesters. Due to the properties of biodegradability and biocompatibility, biopolyesters have great potential in biomedical applications (as implanting or covering biomaterials, drug carriers). Moreover, biopolyesters can be fused with other functional ingredients to achieve novel applications or improved functions. This study summarizes and compares the updated preparation methods of representative biopolyesters, also introduces the current status and future trends of their applications in biomedical fields.


Asunto(s)
Materiales Biocompatibles/síntesis química , Investigación Biomédica , Poliésteres/síntesis química , Materiales Biocompatibles/química , Poliésteres/química , Polimerizacion
9.
Biotechnol Adv ; 36(7): 1917-1927, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30063950

RESUMEN

Compared with the better-studied canonical amino acids, the distribution, metabolism and functions of natural non-canonical amino acids remain relatively obscure. Natural non-canonical amino acids have been mainly discovered in plants as secondary metabolites that perform diversified physiological functions. Due to their specific characteristics, a broader range of natural and artificial non-canonical amino acids have recently been applied in the development of functional materials and pharmaceutical products. With the rapid development of advanced methods in biotechnology, non-canonical amino acids can be incorporated into peptides, proteins and enzymes to improve the function and performance relative to their natural counterparts. Therefore, biotechnological application of non-canonical amino acids in artificial bio-macromolecules follows the central goal of synthetic biology to: create novel life forms and functions. However, many of the non-canonical amino acids are synthesized via chemo- or semi-synthetic methods, and few non-canonical amino acids can be synthesized using natural in vivo pathways. Therefore, further research is needed to clarify the metabolic pathways and key enzymes of the non-canonical amino acids. This will lead to the discovery of more candidate non-canonical amino acids, especially for those that are derived from microorganisms and are naturally bio-compatible with chassis strains for in vivo biosynthesis. In this review, we summarize representative natural and artificial non-canonical amino acids, their known information regarding associated metabolic pathways, their characteristics and their practical applications. Moreover, this review summarizes current barriers in developing in vivo pathways for the synthesis of non-canonical amino acids, as well as other considerations, future trends and potential applications of non-canonical amino acids in advanced biotechnology.


Asunto(s)
Aminoácidos/biosíntesis , Biotecnología , Ingeniería Metabólica , Biología Sintética , Redes y Vías Metabólicas , Péptidos/metabolismo , Proteínas/metabolismo
10.
Materials (Basel) ; 11(8)2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30042344

RESUMEN

With the rapid development of synthetic biology and metabolic engineering, a broad range of biochemicals can be biosynthesized, which include polyhydroxyalkanoates and isoprenoids. However, some of the bio-approaches in chemical synthesis have just started to be applied outside of laboratory settings, and many require considerable efforts to achieve economies of scale. One of the often-seen barriers is the low yield and productivity, which leads to higher unit cost and unit capital investment for the bioconversion process. In general, higher carbon economy (less carbon wastes during conversion process from biomass to objective bio-based chemicals) will result in higher bioconversion yield, which results in less waste being generated during the process. To achieve this goal, diversified strategies have been applied; matured strategies include pathway engineering to block competitive pathways, enzyme engineering to enhance the activities of enzymes, and process optimization to improve biomass/carbon yield. In this review, we analyze the impact of carbon sources from different types of biomass on the yield of bio-based chemicals (especially for polyhydroxyalkanoates and isoprenoids). Moreover, we summarize the traditional strategies for improving carbon economy during the bioconversion process and introduce the updated techniques in building up non-natural carbon pathways, which demonstrate higher carbon economies than their natural counterparts.

11.
J Biotechnol ; 274: 15-27, 2018 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-29549002

RESUMEN

Cupriavidus necator H16 gains increasing attention in microbial research and biotechnological application due to its diverse metabolic features. Here we present a tightly controlled gene expression system for C. necator including the pBBR1-vector that contains hybrid promoters originating from C. necator native tolC-promoter in combination with a synthetic tetO-operator. The expression of the reporter gene from these plasmids relies on the addition of the exogenous inducer doxycycline (dc). The novel expression system offers a combination of advantageous features as; (i) high and dose-dependent recombinant protein production, (ii) tight control with a high dynamic range (On/Off ratio), which makes it applicable for harmful pathways or for toxic protein production, (iii) comparable cheap inducer (doxycycline, dc), (iv) effective at low inducer concentration, that makes it useful for large scale application, (v) rapid, diffusion controlled induction, and (vi) the inducer does not interfere within the cell metabolism. As applications of the expression system in C. necator H16, the growth ability on glycerol was enhanced by constitutively expressing the E. coli glpk gene-encoding for glycerol kinase. Likewise, we used the system to overcome the expression toxicity of mevalonate pathway in C. necator H16. With this system, the mevalonate-genes were successfully introduced in the host and the recombinant strains could produce about 200 mg/l mevalonate.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Cupriavidus necator/crecimiento & desarrollo , Ingeniería Genética/métodos , Plásmidos/genética , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Doxiciclina/farmacología , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Glicerol Quinasa/genética , Glicerol Quinasa/metabolismo , Plásmidos/metabolismo , Regiones Promotoras Genéticas
12.
Prep Biochem Biotechnol ; 48(3): 257-263, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29355459

RESUMEN

Erythritol, a well-known natural sweetener, is mainly produced by microbial fermentation. Various metal ions (Al3+, Cu2+, Mn2+, and Ni2+) were added to the culture medium of Trichosporonoides oedocephalis ATCC 16958 at 30 mg/L in shake flask cultures. Compared with controls, Cu2+ increased the erythritol content by 86% and decreased the glycerol by-product by 31%. After 48 hr of shake flask culture, sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that expression levels of erythrose reductase (ER) in the presence of 30 mg/L CuSO4 · 5H2O were higher than those obtained after treatment with other examined metal ions. Furthermore, after 108 hr of batch culture in a 5-L bioreactor, supplementation with 30 mg/L of CuSO4 · 5H2O increased the specific erythritol content by 27%. Further studies demonstrated that ER activity under 30 mg/L CuSO4 · 5H2O supplementation in a fermentor was overtly increased compared with the control after 60 hr, while glycerol-3-phosphate dehydrogenase activity was clearly reduced in most of the fermentation process. Furthermore, the NADPH/NADP ratio was slightly lower in T. oedocephalis cells treated with Cu2+ compared with control cells. These results provide further insights into Cu2+ effects on erythritol biosynthesis in T. oedocephalis and should improve the industrial production of erythritol by biological processes.


Asunto(s)
Basidiomycota/enzimología , Técnicas de Cultivo Celular por Lotes/métodos , Eritritol/metabolismo , Microbiología Industrial/métodos , NADP/metabolismo , Edulcorantes/metabolismo , Aldehído Reductasa/metabolismo , Basidiomycota/metabolismo , Reactores Biológicos/microbiología , Cationes/metabolismo , Fermentación , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Metales/metabolismo
13.
Appl Microbiol Biotechnol ; 101(20): 7417-7426, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28884324

RESUMEN

With the finite supply of petroleum and increasing concern with environmental issues associated with their harvest and processing, the development of more eco-friendly, sustainable alternative biopolymers that can effectively fill the role of petro-polymers has become a major focus. Polyhydroxyalkanoate (PHA) can be naturally produced by many species of bacteria and the PHA synthase is believed to be key enzyme in this natural pathway. Natural PHA synthases are diverse and can affect the properties of the produced PHAs, such as monomer composition, molecular weights, and material properties. Moreover, recent studies have led to major advances in the searching of PHA synthases that display specific properties, as well as engineering efforts that offer more efficient PHA synthases, increased PHA compound production, or even novel biopolyesters which cannot be naturally produced. In this article, we review the updated information of natural PHA synthases and their engineering strategies for improved performance in polyester production. We also speculate future trends on the development of robust PHA synthases and their application in biopolyester production.


Asunto(s)
Aciltransferasas/genética , Aciltransferasas/metabolismo , Biopolímeros/biosíntesis , Biotecnología/métodos , Poliésteres/metabolismo , Polihidroxialcanoatos/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Microb Cell Fact ; 16(1): 8, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-28068985

RESUMEN

BACKGROUND: As an important bulk chemical for synthetic rubber, isoprene can be biosynthesized by robust microbes. But rational engineering and optimization are often demanded to make the in vivo process feasible due to the complexities of cellular metabolism. Alternative synthetic biochemistry strategies are in fast development to produce isoprene or isoprenoids in vitro. RESULTS: This study set up an in vitro enzyme synthetic chemistry process using 5 enzymes in the lower mevalonate pathway to produce isoprene from mevalonate. We found the level and ratio of individual enzymes would significantly affect the efficiency of the whole system. The optimized process using 10 balanced enzyme unites (5.0 µM of MVK, PMK, MVD; 10.0 µM of IDI, 80.0 µM of ISPS) could produce 6323.5 µmol/L/h (430 mg/L/h) isoprene in a 2 ml in vitro system. In a scale up process (50 ml) only using 1 balanced enzyme unit (0.5 µM of MVK, PMK, MVD; 1.0 µM of IDI, 8.0 µM of ISPS), the system could produce 302 mg/L isoprene in 40 h, which showed higher production rate and longer reaction phase with comparison of the in vivo control. CONCLUSIONS: By optimizing the enzyme levels of lower MVA pathway, synthetic biochemistry methods could be set up for the enzymatic production of isoprene or isoprenoids from mevalonate.


Asunto(s)
Hemiterpenos/biosíntesis , Ingeniería Metabólica/métodos , Ácido Mevalónico/metabolismo , Butadienos , Escherichia coli/genética , Escherichia coli/metabolismo , Pentanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Appl Microbiol Biotechnol ; 100(9): 3865-76, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27005411

RESUMEN

Glycine betaine (betaine) is widely distributed in nature and can be found in many microorganisms, including bacteria, archaea, and fungi. Due to its particular functions, many microorganisms utilize betaine as a functional chemical and have evolved different metabolic pathways for the biosynthesis and catabolism of betaine. As in animals and plants, the principle role of betaine is to protect microbial cells against drought, osmotic stress, and temperature stress. In addition, the role of betaine in methyl group metabolism has been observed in a variety of microorganisms. Recent studies have shown that betaine supplementation can improve the performance of microbial strains used for the fermentation of lactate, ethanol, lysine, pyruvate, and vitamin B12, during which betaine can act as stress protectant or methyl donor for the biosynthesis of structurally complex compounds. In this review, we summarize the transport, synthesis, catabolism, and functions of betaine in microorganisms and discuss potential engineering strategies that employ betaine as a methyl donor for the biosynthesis of complex secondary metabolites such as a variety of vitamins, coenzymes, and antibiotics. In conclusion, the biocompatibility, C/N ratio, abundance, and comprehensive metabolic information of betaine collectively indicate that this molecule has great potential for broad applications in microbial biotechnology.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Betaína/metabolismo , Hongos/metabolismo , Redes y Vías Metabólicas , Animales , Estrés Fisiológico
16.
Prep Biochem Biotechnol ; 46(6): 552-8, 2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26460683

RESUMEN

Spider dragline silk is a remarkably strong fiber with impressive mechanical properties, which were thought to result from the specific structures of the underlying proteins and their molecular size. In this study, silk protein 11R26 from the dragline silk protein of Nephila clavipes was used to analyze the potential effects of the special amino acids on the function of 11R26. Three protein derivatives, ZF4, ZF5, and ZF6, were obtained by site-directed mutagenesis, based on the sequence of 11R26, and among these derivatives, serine was replaced with cysteine, isoleucine, and arginine, respectively. After these were expressed and purified, the mechanical performance of the fibers derived from the four proteins was tested. Both hardness and average elastic modulus of ZF4 fiber increased 2.2 times compared with those of 11R26. The number of disulfide bonds in ZF4 protein was 4.67 times that of 11R26, which implied that disulfide bonds outside the poly-Ala region affect the mechanical properties of spider silk more efficiently. The results indicated that the mechanical performances of spider silk proteins with small molecular size can be enhanced by modification of the amino acids residues. Our research not only has shown the feasibility of large-scale production of spider silk proteins but also provides valuable information for protein rational design.


Asunto(s)
Aminoácidos/química , Proteínas de Insectos/biosíntesis , Ensayo de Materiales , Seda/metabolismo , Secuencia de Aminoácidos , Animales , Disulfuros/química , Elasticidad , Fermentación , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Microscopía Electrónica , Arañas
17.
Microb Cell Fact ; 13: 165, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25491899

RESUMEN

Short chain diols (propanediols, butanediols, pentanediols) have been widely used in bulk and fine chemical industries as fuels, solvents, polymer monomers and pharmaceutical precursors. The chemical production of short chain diols from fossil resources has been developed and optimized for decades. Consideration of the exhausting fossil resources and the increasing environment issues, the bio-based process to produce short chain diols is attracting interests. Currently, a variety of biotechnologies have been developed for the microbial production of the short chain diols from renewable feed-stocks. In order to efficiently produce bio-diols, the techniques like metabolically engineering the production strains, optimization of the fermentation processes, and integration of a reasonable downstream recovery processes have been thoroughly investigated. In this review, we summarized the recent development in the whole process of bio-diols production including substrate, microorganism, metabolic pathway, fermentation process and downstream process.


Asunto(s)
Bacterias/metabolismo , Butileno Glicoles/metabolismo , Glicoles de Propileno/metabolismo
18.
BMC Biotechnol ; 14: 30, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24766677

RESUMEN

BACKGROUND: 2-phenylethanl (2-PE) and its derivatives are important chemicals, which are widely used in food materials and fine chemical industries and polymers and it's also a potentially valuable alcohol for next-generation biofuel. However, the biosynthesis of 2-PE are mainly biotransformed from phenylalanine, the price of which barred the production. Therefore, it is necessary to seek more sustainable technologies for 2-PE production. RESULTS: A new strain which produces 2-PE through the phenylpyruvate pathway was isolated and identified as Enterobacter sp. CGMCC 5087. The strain is able to use renewable monosaccharide as the carbon source and NH4Cl as the nitrogen source to produce 2-PE. Two genes of rate-limiting enzymes, chorismate mutase p-prephenate dehydratase (PheA) and 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthase (DAHP), were cloned from Escherichia coli and overexpressed in E. sp. CGMCC 5087. The engineered E. sp. CGMCC 5087 produces 334.9 mg L⁻¹ 2-PE in 12 h, which is 3.26 times as high as the wild strain. CONCLUSIONS: The phenylpyruvate pathway and the substrate specificity of 2-keto-acid decarboxylase towards phenylpyruvate were found in E. sp. CGMCC 5087. Combined with the low-cost monosaccharide as the substrate, the finding provides a novel and potential way for 2-PE production.


Asunto(s)
Enterobacter/metabolismo , Alcohol Feniletílico/metabolismo , 3-Desoxi-7-Fosfoheptulonato Sintasa/genética , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Cloruro de Amonio/metabolismo , Cromatografía de Gases , Escherichia coli/enzimología , Monosacáridos/metabolismo , Alcohol Feniletílico/análisis , Prefenato Deshidrogenasa/genética , Prefenato Deshidrogenasa/metabolismo , Especificidad por Sustrato
19.
Microb Cell Fact ; 13: 20, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24512040

RESUMEN

BACKGROUND: Sabinene, one kind of monoterpene, accumulated limitedly in natural organisms, is being explored as a potential component for the next generation of aircraft fuels. And demand for advanced fuels impels us to develop biosynthetic routes for the production of sabinene from renewable sugar. RESULTS: In this study, sabinene was significantly produced by assembling a biosynthetic pathway using the methylerythritol 4-phosphate (MEP) or heterologous mevalonate (MVA) pathway combining the GPP and sabinene synthase genes in an engineered Escherichia coli strain. Subsequently, the culture medium and process conditions were optimized to enhance sabinene production with a maximum titer of 82.18 mg/L. Finally, the fed-batch fermentation of sabinene was evaluated using the optimized culture medium and process conditions, which reached a maximum concentration of 2.65 g/L with an average productivity of 0.018 g h⁻¹ g⁻¹ dry cells, and the conversion efficiency of glycerol to sabinene (gram to gram) reached 3.49%. CONCLUSIONS: This is the first report of microbial synthesis of sabinene using an engineered E. coli strain with the renewable carbon source as feedstock. Therefore, a green and sustainable production strategy has been established for sabinene.


Asunto(s)
Biocombustibles , Monoterpenos/metabolismo , Terpenos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Cultivo Celular por Lotes , Monoterpenos Bicíclicos , Vías Biosintéticas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Ingeniería Genética , Monoterpenos/química , Familia de Multigenes , Plásmidos/genética , Plásmidos/metabolismo , Terpenos/química
20.
Biotechnol Adv ; 32(2): 382-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24361277

RESUMEN

With the depletion of the nonrenewable petrochemical resources and the increasing concerns of environmental pollution globally, biofuels and biobased chemicals produced from the renewable resources appear to be of great strategic significance. The present review described the progress in the biosynthesis of fatty acid and its derivatives from renewable biomass and emphasized the importance of fatty acid serving as the platform chemical and feedstock for a variety of chemicals. Due to the low efficient conversions of lignocellulosic biomass or carbon dioxide to fatty acid, we also put forward that rational strategies for the production of fatty acid and its derivatives should further derive from the consideration of whole bioprocess (pretreatment, saccharification, fermentation, separation), multiscale analysis and interdisciplinary combinations (omics, kinetics, metabolic engineering, synthetic biology, fermentation and so on).


Asunto(s)
Biocombustibles , Biomasa , Ácidos Grasos , Escherichia coli , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Fermentación , Lignina , Ingeniería Metabólica , Redes y Vías Metabólicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...