Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Prod Res ; : 1-5, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206882

RESUMEN

The volatile organic compounds (VOCs) of Rhizoma Acori Tatarinowii were extracted via steam distillation and then irradiated with 60Co-γ rays, in which doses of 60Co-γ 0, 5, and 10 kGy were selected to irradiate the VOCs. Finally, gas chromatography-ion mobility spectrometry (GC-IMS) was used to compare the differences between the VOCs, and then qualitatively analyse the components and contents of each part of the VOCs The results showed that under the three irradiation doses of 60Co-γ 0, 5 and 10 kGy, the VOCs of unirradiated and 5 kGy-irradiated samples were closer, and the samples irradiated at a 10 kGy dose were quite different from the other two components, meaning that when the calamus medicinal materials were sterilised by means of 60Co irradiation, the dose of 5 kGy was closer to the original compound content of the medicinal materials.

2.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5822-5829, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38114178

RESUMEN

Based on the CX3C chemokine ligand 1(CX3CL1)-CX3C chemokine receptor 1(CX3CR1) axis, this study explored the potential mechanism by which Zuogui Jiangtang Jieyu Formula(ZGJTJY) improved neuroinflammation and enhanced neuroprotective effect in a rat model of diabetes mellitus complicated with depression(DD). The DD rat model was established by feeding a high-fat diet combined with streptozotocin(STZ) intraperitoneal injection for four weeks and chronic unpredictable mild stress(CUMS) combined with isolated cage rearing for five weeks. The rats were divided into a control group, a model group, a positive control group, an inhibitor group, and a ZGJTJY group. The open field test and forced swimming test were used to assess the depression-like behaviors of the rats. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the expression levels of the pro-inflammatory cytokines interleukin-1ß(IL-1ß) and tumor necrosis factor-α(TNF-α) in plasma. Immunofluorescence staining was used to detect the expression of ionized calcium-binding adapter molecule 1(Iba1), postsynaptic density protein-95(PSD95), and synapsin-1(SYN1) in the hippocampus. Hematoxylin-eosin(HE) staining, Nissl staining, and TdT-mediated dUTP nick end labeling(TUNEL) fluorescence staining were performed to assess hippocampal neuronal damage. Western blot was used to measure the expression levels of CX3CL1, CX3CR1, A2A adenosine receptor(A2AR), glutamate receptor 2A(NR2A), glutamate receptor 2B(NR2B), and brain-derived neurotrophic factor(BDNF) in the hippocampus. Compared with the model group, the ZGJTJY group showed improved depression-like behaviors in DD rats, enhanced neuroprotective effect, increased expression of PSD95, SYN1, and BDNF(P<0.01), and decreased expression of Iba1, IL-1ß, and TNF-α(P<0.01), as well as the expression of CX3CL1, CX3CR1, A2AR, NR2A, and NR2B(P<0.01). These results suggest that ZGJTJY may exert its neuroprotective effect by inhibiting the CX3CL1-CX3CR1 axis and activation of hippocampal microglia, thereby improving neuroinflammation and abnormal activation of N-methyl-D-aspartate receptor(NMDAR) subunits, and ultimately enhancing the expression of synaptic-related proteins PSD95, SYN1, and BDNF in the hippocampus.


Asunto(s)
Diabetes Mellitus , Fármacos Neuroprotectores , Ratas , Animales , Depresión/tratamiento farmacológico , Factor Neurotrófico Derivado del Encéfalo , Factor de Necrosis Tumoral alfa/metabolismo , Enfermedades Neuroinflamatorias , Receptores de Glutamato , Receptor 1 de Quimiocinas CX3C/genética
3.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3874-3881, 2023 Jul.
Artículo en Chino | MEDLINE | ID: mdl-37475079

RESUMEN

This study aimed to investigate the intervention effect and mechanism of Xiaoyao Kangai Jieyu Recipe(XKJR) on hip-pocampal microglia and neuronal damage in mice with breast cancer related depression. The mouse model of breast cancer related depression was established by inoculation of 4T1 breast cancer cells in axilla and subcutaneous injection of corticosterone(30 mg·kg~(-1)). The successfully modeled mice were randomly divided into a model group, a positive drug group(capecitabine 60 mg·kg~(-1)+fluoxetine 19.5 mg·kg~(-1)), and XKJR group(19.5 mg·kg~(-1) crude drug), with 6 in each group. Another 6 normal mice were taken as a normal group. The administration groups were given corresponding drugs by gavage, while the normal and model groups were given an equal volume of distilled water, once a day for 21 consecutive days. The depressive behavior of mice was assessed by glucose consumption test, open field test and novelty-suppressed feeding test. Hematoxylin and eosin(HE) staining and tumor suppression rate were used to evaluate the changes of axillary tumors. The mRNA expressions and the relative protein expressions of interleukin-1ß(IL-1ß), interleukin-18(IL-18), cyclooxyganese-2(COX-2) and glutamyl-prolyl-tRNA synthetase(EPRs) in the hippocampus of mice were determined by quantitative real-time polymerase chain reaction(qRT-PCR) and immunohistochemistry, respectively. Immunofluorescence was performed to detect the mean fluorescence intensity of CD11b, a marker of hippocampal microglia activation. Nissler staining and transmission electron microscopy were employed to observe the morphological changes and the ultramorphological changes of hippocampal neurons, respectively. The experimental results indicated that compared with the normal group, the model group had reduced glucose consumption and lowered number of total activities in open field test(P<0.05, P<0.01), prolonged first feeding latency in no-velty-suppressed feeding test(P<0.01), and significant depression-like behavior; the contents of IL-1ß, IL-18, COX-2, and EPRs in hippocampus were increased(P<0.05, P<0.01), with hippocampal microglia activation and obvious neuronal damage. Compared with the model group, the positive drug group and the XKJR group presented an improvement in depressive behaviors, a decrease in the contents of IL-1ß, IL-18, COX-2 and EPRs in hippocampus, and an alleviation in the activation of hippocampal microglia and neuronal damage; the tumor suppression rates of positive drug and XKJR were 40.32% and 48.83%, respectively, suggesting a lower tumor growth rate than that of the model group. In summary, XKJR may improve hippocampal microglia activation and neuronal damage in mice with breast cancer related depression through activating COX signaling pathway.


Asunto(s)
Depresión , Neoplasias , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/genética , Interleucina-18 , Ciclooxigenasa 2/genética , Hipocampo , Glucosa
4.
Eur J Pharmacol ; 930: 175149, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35878808

RESUMEN

There has been ample research showing that insomnia is a potential trigger of depression as well as a symptom of depression. These two factors contribute to behavioural problems and are closely related to the plasticity of hippocampal synapses. Although depression and insomnia impair hippocampal synaptic plasticity, the mechanism by which this happens remains a mystery. This study aimed to investigate the pathogenesis of insomnia comorbidity in depression and the regulatory effect of venlafaxine combined with melatonin on hippocampal synaptic plasticity in chronic unpredictable mild stress (CUMS) with sleep deprivation (SD) rats. Thus, rats were subjected to 14 days of chronic mild unpredictable stress, gradually acclimated to sleep deprivation on days 12-14. Followed by 21 consecutive days of sleep deprivation, 18 h per day, with daily gavage of venlafaxine (13.5 mg/kg) + melatonin (72 mg/kg) on days 15-36. Venlafaxine + melatonin treatment improves depression-like behaviour, pentobarbital sodium experimental sleep latency, and sleep duration in CUMS +SD rats. In addition to improving depressive-like behaviors, sleep deprivation also upregulates the expression of caspase-specific cysteine protein 3 (Caspase 3) in the pineal glial cells of chronic mild rats, as well as in hippocampal microglia. Expression of ionic calcium-binding adaptor 1 (iba-1), downregulates the secretion of several synaptic plasticity-related proteins, notably cAMP response element binding protein (CREB), glial cell line-derived neurotrophic factor (GDNF), and the synaptic scaffolding protein Spinophiline (Spinophiline). Hematoxylin-eosin staining showed that the structure of the pineal gland and hippocampus was damaged, and Golgi staining showed that the dendrites and spines in the DG area of the hippocampus were destroyed, vaguely aggregated or even disappeared, and the connection network could not be established. Western blot analysis further revealed a positive correlation between low melatonin levels and reduced Spinophiline protein. Interestingly, venlafaxine + melatonin reversed these events by promoting hippocampal synaptic plasticity by regulating melatonin secretion from the pineal gland. Therefore, it exerted an antidepressant effect in sleep deprivation combined with CUMS model rats. Overall, the results of this study suggest that the pathophysiology of depressive insomnia comorbidity is mediated by impaired pineal melatonin secretion and impaired hippocampal synaptic plasticity. In addition, these responses are associated with melatonin secretion from the pineal gland.


Asunto(s)
Melatonina , Glándula Pineal , Trastornos del Inicio y del Mantenimiento del Sueño , Animales , Depresión/metabolismo , Hipocampo/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Plasticidad Neuronal/fisiología , Ratas , Privación de Sueño/complicaciones , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Clorhidrato de Venlafaxina/farmacología
5.
Behav Brain Res ; 420: 113724, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-34929236

RESUMEN

Depression has become one of the most commonly prevalent neuropsychiatric disorders, and the main characteristics of depression are sleep disorders and melatonin secretion disorders caused by circadian rhythm disorders. Abnormal endogenous melatonin alterations can contribute to the occurrence and development of depression. However, molecular mechanisms underlying this abnormality remain ambiguous. The present review summarizes the mechanisms underlying the antidepressant effects of melatonin, which is related to its functions in the regulation of the hypothalamic-pituitary-adrenal axis, inhibition of neuroinflammation, inhibition of oxidative stress, alleviation of autophagy, and upregulation of neurotrophic, promotion of neuroplasticity and upregulation of the levels of neurotransmitters, etc. Also, melatonin receptor agonists, such as agomelatine, ramelteon, piromelatine, tasimelteon, and GW117, have received considerable critical attention and are highly implicated in treating depression and comorbid disorders. This review focuses on melatonin and various melatonin receptor agonists in the pathophysiology and treatment of depression, aiming to provide further insight into the pathogenesis of depression and explore potential targets for novel agent development.


Asunto(s)
Antidepresivos/farmacología , Antioxidantes/farmacología , Depresión/tratamiento farmacológico , Melatonina/farmacología , Receptores de Melatonina/metabolismo , Trastornos del Sueño-Vigilia/tratamiento farmacológico , Animales , Benzofuranos , Trastornos Cronobiológicos , Ciclopropanos , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Indenos , Sistema Hipófiso-Suprarrenal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...