Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 14(9): e0221827, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31532782

RESUMEN

Chloroplasts significantly influence species phylogenies because of their maternal inheritance and the moderate evolutionary rate of their genomes. Avocado, which is a member of the family Lauraceae, has received considerable attention from botanists, likely because of its position as a basal angiosperm. However, there is relatively little avocado genomic information currently available. In this study, six complete avocado chloroplast genomes from three ecological races were assembled to examine the sequence diversity among the three avocado ecological races. A comparative genomic analysis revealed that 515 simple sequence repeat loci and 176 repeats belonging to four other types were polymorphic across the six chloroplast genomes. Three highly variable regions (trnC-GCA-petN, petN-psbM, and petA-psbJ) were identified as highly informative markers. A phylogenetic analysis based on 79 common protein-coding genes indicated that the six examined avocado accessions from three ecological races form a monophyletic clade. The other three genera belonging to the Persea group clustered to form a sister clade with a high bootstrap value. These chloroplast genomes provide important genetic information for future attempts at identifying avocado races and for the related biological research.


Asunto(s)
Cloroplastos/genética , Genoma del Cloroplasto , Persea/clasificación , Proteínas de Cloroplastos/genética , Evolución Molecular , Persea/genética , Filogenia , Hojas de la Planta/genética , Análisis de Secuencia de ADN/métodos
2.
Genes (Basel) ; 10(3)2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30871275

RESUMEN

Genomic data is a powerful tool. However, the phylogenetic relationships among different ecological races of avocado remain unclear. Here, we used the results from specific length amplified fragment sequencing (SLAF-seq) and transcriptome data to infer the population structure and genetic diversity of 21 avocado cultivars and reconstructed the phylogeny of three ecological races and two interracial hybrids. The results of the three analyses performed (unweighted pair-group methods with arithmetic means (UPGMA) cluster, Principal coordinate analysis (PCoA), and STRUCTURE) based on single nucleotide polymorphisms (SNPs) from SLAF-seq all indicated the existence of two populations based on botanical race: Mexican⁻Guatemalan and West Indian genotype populations. Our results based on SNPs from SLAF-seq indicated that the Mexican and Guatemalan races were more closely related to each other than either was to the West Indian race, which also was confirmed in the UPGMA cluster results based on SNPs from transcriptomic data. SNPs from SLAF-seq provided strong evidence that the Guatemalan, Mexican, and Guatemalan × Mexican hybrid accession possessed higher genetic diversity than the West Indian races and Guatemalan × West Indian hybrid accessions. Six race-specific Kompetitive allele specific PCR (KASP) markers based on SNPs from SLAF-seq were then developed and validated.


Asunto(s)
Persea/genética , Polimorfismo Genético , Transcriptoma , Marcadores Genéticos , Técnicas de Genotipaje/métodos , Técnicas de Genotipaje/normas , Persea/clasificación , Filogenia , Banco de Semillas
3.
PLoS One ; 11(7): e0158705, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27387814

RESUMEN

N-(2-Chloro-4-pyridyl)-N'-phenylurea (CPPU) is a highly active cytokinin-like plant growth regulator that promotes chlorophyll biosynthesis, cell division, and cell expansion. It also increases fruit set and accelerates fruit enlargement. However, there has been no report about the effect of CPPU on fruit development and its physiological mechanism in macadamia. In this study, we investigated the effect of CPPU treatment at early fruit development via foliar spray or raceme soaking at 20 mg·L-1 on fruit set and related physiology in macadamia. Changes in carbohydrate contents and endogenous hormones in leaves, bearing shoots and fruit were also examined. Results showed that CPPU significantly reduced young fruit drop and delayed the wave of fruit drop by 1-2 weeks. The treatment significantly decreased the contents of total soluble sugars and starch in the leaves, but increased them in the bearing shoots and total soluble sugars in the husk (pericarp) and seeds. These findings suggested that CPPU promoted carbohydrate mobilization from the leaves to the fruit. In addition, CPPU increased the contents of indole-3-acetic acid (IAA), gibberellin acid (GA3), and zeatin riboside (ZR) and decreased the abscisic acid (ABA) in the husk. Therefore, CPPU treatment reduced the early fruit drop by increasing carbohydrate availability and by modifying the balance among endogenous hormones.


Asunto(s)
Carbohidratos/química , Frutas/efectos de los fármacos , Macadamia/efectos de los fármacos , Polietilenglicoles/química , Poliuretanos/química , Ácido Abscísico/metabolismo , Citocininas/metabolismo , Frutas/metabolismo , Giberelinas/metabolismo , Macadamia/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Semillas/efectos de los fármacos
4.
Plant Physiol Biochem ; 55: 33-42, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22522578

RESUMEN

Polar auxin transport (PAT) plays an important role in the adventitious root formation of mango cotyledon segments, but the molecular mechanism remains unclear. In this study, we cloned a gene encoding an auxin efflux carrier (designated as MiPIN1), and we cloned four genes encoding auxin influx carriers (designated as MiAUX1, MiAUX2, MiAUX3 and MiAUX4). The results of a phylogenetic tree analysis indicated that MiPIN1 and the MiAUXs belong to plant PIN and AUXs/LAXs groups. Quantitative real-time PCR indicated that the expression of MiPIN1 and the MiAUXs was lowest at 0 days but sharply increased on and after day 4. During the root formation in the mango cotyledon segments, the MiPIN1 expression in the distal cut surface (DCS) was always higher than the expression in the proximal cut surface (PCS) whereas the expression of the MiAUXs in the PCS was usually higher than in the DCS. This expression pattern might be result in the PAT from the DCS to the PCS, which is essential for the adventitious root formation in the PCS. Our previous study indicated that a pre-treatment of embryos with indole-3-butyric acid (IBA) significantly promoted adventitious rooting in PCS whereas a pre-treatment with 2,3,5-triiodobenzoic acid (TIBA) completely inhibited this rooting. In this study, however, IBA and TIBA pre-treatments slightly changed the expression of MiPIN1. In contrast, while the MiAUX3 and MiAUX4 expression levels were significantly up-regulated by the IBA pre-treatment, the expression levels were down-regulated by the TIBA pre-treatment. These findings imply that MiAUX3 and MiAUX4 are more sensitive to the IBA and TIBA treatments and that they might play important roles during adventitious root formation in mango cotyledon segments.


Asunto(s)
Cotiledón/genética , Ácidos Indolacéticos/metabolismo , Mangifera/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Transporte Biológico , Clonación Molecular , Cotiledón/crecimiento & desarrollo , Cotiledón/metabolismo , ADN Complementario/química , ADN Complementario/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mangifera/crecimiento & desarrollo , Mangifera/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...