Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627527

RESUMEN

Ion exchange is a powerful method to access metastable materials with advanced functionalities for energy storage applications. However, high concentrations and unfavourably large excesses of lithium are always used for synthesizing lithium cathodes from parent sodium material, and the reaction pathways remain elusive. Here, using layered oxides as model materials, we demonstrate that vacancy level and its corresponding lithium preference are critical in determining the accessible and inaccessible ion exchange pathways. Taking advantage of the strong lithium preference at the right vacancy level, we establish predictive compositional and structural evolution at extremely dilute and low excess lithium based on the phase equilibrium between Li0.94CoO2 and Na0.48CoO2. Such phase separation behaviour is general in both surface reaction-limited and diffusion-limited exchange conditions and is accomplished with the charge redistribution on transition metals. Guided by this understanding, we demonstrate the synthesis of NayCoO2 from the parent LixCoO2 and the synthesis of Li0.94CoO2 from NayCoO2 at 1-1,000 Li/Na (molar ratio) with an electrochemical assisted ion exchange method by mitigating the kinetic barriers. Our study opens new opportunities for ion exchange in predictive synthesis and separation applications.

2.
Environ Pollut ; 342: 123048, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036089

RESUMEN

Biomass exposure is a significant environmental risk factor for COPD, but the underlying mechanisms have not yet been fully elucidated. Inflammatory microenvironment has been shown to drive the development of many chronic diseases. Pollution exposure can cause increased levels of inflammatory factors in the lungs, leading to an inflammatory microenvironment which is prevalent in COPD. Our findings revealed that IL-17F was elevated in COPD, while exposure to biomass led to increased expression of IL-17F in both alveolar epithelial and macrophage cells in mice. Blocking IL-17F could alleviate the lung inflammation induced by seven days of biomass exposure in mice. We employed a transwell co-culture system to simulate the microenvironment and investigate the interactions between MLE-12 and MH-S cells. We demonstrated that anti-IL-17F antibody attenuated the inflammatory responses induced by BRPM2.5 in MLE-12 and MH-S co-cultured with BRPM2.5-MLE-12, which reduced inflammatory changes in microenvironment. We found that IL-17RC, an important receptor for IL-17F, played a key role in the interactions. Knockout of IL-17RC in MH-S resulted in inhibited IL-17F signaling and attenuated inflammatory response after MH-S co-culture with BRPM2.5-MLE-12. Our investigation suggests that BRPM2.5 induces lung epithelial-macrophage interactions via IL-17F/IL-17RC axis regulating the inflammatory response. These results may provide a novel strategy for effective prevention and treatment of biomass-related COPD.


Asunto(s)
Interleucina-17 , Enfermedad Pulmonar Obstructiva Crónica , Ratones , Animales , Receptores de Interleucina-17/metabolismo , Biomasa , Ratones Noqueados , Material Particulado/toxicidad
3.
Front Genet ; 14: 1154067, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065482

RESUMEN

Background: Diminished ovarian reserve is one of the most important causes of female infertility. In the etiology study of DOR, besides age, it is known that chromosomal abnormality, radiotherapy, chemotherapy and ovarian surgery can result in DOR. For young women without obvious risk factors, gene mutation should be considered as a possible cause. However, the specific molecular mechanism of DOR has not been fully elucidated. Methods: In order to explore the pathogenic variants related to DOR, twenty young women under 35 years old affected by DOR without definite factors damaging ovarian reserve were recruited as the research subjects, and five women with normal ovarian reserve were recruited as the control group. Whole exome sequencing was applied as the genomics research tool. Results: As a result, we obtained a set of mutated genes that may be related to DOR, where the missense variant on GPR84 was selected for further study. It is found that GPR84Y370H variant promotes the expression of proinflammatory cytokines (TNF-α, IL12B, IL-1ß) and chemokines (CCL2, CCL5), as well as the activation of NF-κB signaling pathway. Conclusion: In conclusion, GPR84Y370H variant was identified though analysis for WES results of 20 DOR patients. The deleterious variant of GPR84 could be the potential molecular mechanism of non-age-related pathological DOR through its role in promoting inflammation. The findings of this study can be used as a preliminary research basis for the development of early molecular diagnosis and treatment target selection of DOR.

4.
ACS Omega ; 8(1): 1037-1046, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36643544

RESUMEN

While different display technologies, represented by phage display, have been widely used in drug discovery, they still can hardly achieve function-based peptide screening, which in most cases is performed in mammalian cells. And most attempts to screen functional peptides with mammalian platforms utilized plasmids to store coding information. Our previous work established double-stranded DNAs (dsDNAs) as innovative biological parts to implement AND-gate genetic circuits in mammalian cells. In the current study, we employ dsDNAs with terminal NNK degenerate codons to implement AND-gate genetic circuits and generate peptide libraries in mammalian cells. This dsDNA-based AND-gate (DBAG) peptide library construction strategy is easy to perform, requiring only PCR reaction and cell transfection. High-throughput sequencing (HTS) and single-cell sequencing results revealed both peptide length and amino acid sequence diversity of DBAG peptide libraries. Moreover, as a feasibility test of this strategy, we identified an MDM2-interacting peptide by applying the DBAG peptide library to a mammalian cell-based two-hybrid system. Our work establishes dsDNAs with terminal degenerate codons as biological parts to build peptide libraries in mammalian cells, which may have great application potential in the future.

5.
Proc Natl Acad Sci U S A ; 119(31): e2200751119, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35878020

RESUMEN

The lithium supply issue mainly lies in the inability of current mining methods to access lithium sources of dilute concentrations and complex chemistry. Electrochemical intercalation has emerged as a highly selective method for lithium extraction; however, limited source compositions have been studied, which is insufficient to predict its applicability to the wide range of unconventional water sources (UWS). This work addresses the feasibility and identifies the challenges of Li extraction by electrochemical intercalation from UWS, by answering three questions: 1) Is there enough Li in UWS? 2) How would the solution compositions affect the competition of Li+ to major ions (Na+/Mg2+/K+/Ca2+)? 3) Does the complex solution composition affect the electrode stability? Using one-dimensional olivine FePO4 as the model electrode, we show the complicated roles of major ions. Na+ acts as the competitor ion for host storage sites. The competition from Na+ grants Mg2+ and Ca2+ being only the spectator ions. However, Mg2+ and Ca2+ can significantly affect the charge transfer of Li+ and Na+, therefore affecting the Li selectivity. We point to improving the selectivity of Li+ to Na+ as the key challenge for broadening the minable UWS using the olivine host.

6.
Environ Sci Pollut Res Int ; 25(11): 10782-10791, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29396825

RESUMEN

In this study, a novel anaerobic-anoxic/nitrification (A2N) two-sludge sequencing batch reactor (SBR) configured with post-aeration (A2NO-membrane bioreactor process) was conducted to evaluate the operational efficiency, process characteristics, and microbial community structure in treating synthetic and municipal wastewater. When influent C/N ratios were 4.2-8.6, the removal efficiencies of COD, NH4+-N, TN, and TP were 86.4-90.0, 85.2-93.6, 61.8-76.0, and 97.6-99.3%, respectively, and the effluent concentrations met the first level A criteria of GB18918-2002. Phosphorus removal was mainly in anoxic phase with a removal rate of 0.54-1.30 mgP/(gMLSS h), accounting for 75.9-99.7%. Enhanced phosphorus removal was observed during post-aeration phase with a removal rate of 0.06-0.55 mgP/(gMLSS h). Additionally, Oxidation-Reduction Potential (ORP) and pH could reflect the process of anaerobic phosphorus release and anoxic denitrifying phosphorus removal. DO and pH could indicate the end of nitrification. Moreover, Candidatus Accumulibacter and Dechloromonas related to biological nitrogen and phosphorus removal were enriched effectively with total proportions of 15.9 and 11.5% in treating synthetic and municipal wastewater, respectively.


Asunto(s)
Reactores Biológicos , Microbiota/fisiología , Nitrificación , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/análisis , Anaerobiosis , Membranas Artificiales , Oxidación-Reducción , Eliminación de Residuos Líquidos/instrumentación
7.
Biodegradation ; 29(1): 11-22, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29080942

RESUMEN

For municipal wastewater treatment, main stream biological nutrient removal (BNR) process is becoming more and more important. This lab-scale study, novel MBR_based BNR processes (named A2N-MBR and A2NO-MBR) were built. Comparison of the COD removal, results obtained demonstrated that COD removal efficiencies were almost the same in three processes, with effluent concentration all bellowed 30 mg L-1. However, the two-sludge systems (A2N-MBR and A2NO-MBR) had an obvious advantage over the A2/O for denitrification and phosphorus removal, with the average TP removal rates of 91.20, 98.05% and TN removal rates of 73.00, 79.49%, respectively, higher than that of 86.45 and 61.60% in A2/O process. Illumina Miseq sequencing revealed that Candidatus_Accumulibacter, which is capable of using nitrate as an electron acceptor for phosphorus and nitrogen removal simultaneously, was the dominant phylum in both A2N-MBR and A2NO-MBR process, accounting for 28.74 and 23.98%, respectively. Distinguishingly, major organism groups related to nitrogen and phosphorus removal in A2/O system were Anaerolineaceae_uncultured, Saprospiraceae_uncultured and Thauera, with proportions of 11.31, 8.56 and 5.00%, respectively. Hence, the diversity of dominant PAOs group was likely responsible for the difference in nitrogen and phosphorus removal in the three processes.


Asunto(s)
Bacterias/metabolismo , Reactores Biológicos/microbiología , Membranas Artificiales , Nitrógeno/aislamiento & purificación , Fósforo/aislamiento & purificación , Aerobiosis , Amoníaco/metabolismo , Anaerobiosis , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Desnitrificación , Nitratos/metabolismo , Nitrificación , Filogenia , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...