Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 346: 140598, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37926161

RESUMEN

S(IV)-based systems used for advanced oxidation processes (AOPs) have been constructed for the degradation of organic contaminants via oxysulfur radicals, including SO3•-, SO4•-, and SO5•-. Although SO5•- is proposed as an active species in AOPs processes, research on the reactivity of SO5•- has remained unclear. In this work, 53 target aromatic micropollutants (AMPs), including 13 phenols, 27 amines, and 13 PPCPs were selected to determine the second-order reaction rate constants for SO5•- using the competitive kinetics method, in which the [Formula: see text] values, observed at pH 4 ranged from (2.44 ± 0.00) × 105 M-1 s-1 to (4.41 ± 0.28) × 107 M-1 s-1. Quantitative structure-activity relationship (QSAR) models for the oxidation of AMPs by SO5•- were developed based on 40 [Formula: see text] values of amines and phenols, and their molecular descriptors, using the stepwise multiple linear regression method. This comprehensive model exhibited the excellent goodness-of-fit (Radj2 = 0.802), robustness (QLOO2 = 0.749), and predictability (Qext2 = 0.656), and the one-electron oxidation potential (Eox), energy of the highest occupied molecular orbital energy (EHOMO), and most positive net atomic charge on the carbon atoms (qC+) were considered the most influential descriptors for the comprehensive model, indicating that SO5•- oxidizes pollutants via single electron transfer reaction and exhibits a strong oxidation capacity, especially for pollutants containing electron-donating groups. Moreover, the [Formula: see text] values of 13 PPCPs were predicted using this comprehensive model, which suggested the practical application significance of the QSAR model. This study emphasizes the direct oxidation capacity of SO5•-, which is important to evaluate and simulate AOPs based on S(IV).


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Relación Estructura-Actividad Cuantitativa , Agua , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción , Aminas , Purificación del Agua/métodos , Fenoles/análisis
2.
Chemosphere ; 315: 137781, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36623604

RESUMEN

The photocatalytic degradation behavior of aromatic micro-pollutants (AMPs) exhibits complexity and uncertainty, which mainly depends on the properties of different substituents on benzene. And with similar catalytic reaction substrates, the reaction rate constant could reveal the influence of different characteristics of molecular structure in a specific system. Therefore, the photooxidation pseudo first-order kinetic rate constants (kobs) of 30 AMPs were experimentally determined in Photo-GO system. A quantitative structure-activity relationship (QSAR) model for predicting the photooxidation reaction of AMPs has been developed by stepwise multiple linear regression (MLR) method, based on the lg kobs and representative molecule descriptors (20 in total) including physicochemical, quantum chemical and electrostatic descriptors. Afterwards, Radj2, QLOO2, and Qext2 were calculated as 0.870, 0.841, and 0.732 respectively, which exhibited the excellent goodness-of-fit, robustness, and predictability of the QSAR model, indicating its great prediction ability for photooxidation behavior of AMPs. Meanwhile, during the photooxidation process of AMPs with GO, the model revealed that the one-electron oxidation potential (Eox), molecular dipole moment (µ), and number of hydrogen bond donors (#HD) were the most important molecular structural parameters, which showed that the single electron transfer pathway and adsorption were as the significant steps. Additionally, the Hammett correlation showed that photooxidation of AMPs in Photo-GO system is of typical electrophilic reactions, which demonstrated that the electron-donating substituents could promote the photooxidation of AMPs. The QSAR model was constructed and evaluated to perform the prediction of AMPs reaction kinetics, which provided a guidance for the study of the mechanism and selective oxidation of AOPs photooxidation system based on GO.


Asunto(s)
Contaminantes Ambientales , Grafito , Contaminantes Químicos del Agua , Agua , Relación Estructura-Actividad Cuantitativa , Contaminantes Químicos del Agua/análisis
3.
Water Res ; 228(Pt A): 119364, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36413833

RESUMEN

In recent years, graphene oxide (GO) as a new carbon material has been widely investigated as adsorbent and catalyst. However, effects of GO on the micro-pollutants such as pharmaceuticals and personal care products (PPCPs) under sunlight remains unclear. In this study, the degradation of PPCPs in a simulated sunlight-GO photocatalytic system was systematically investigated. Specifically, GO rapidly degrade 95% of acetaminophen (APAP) within 10 min under simulated sunlight irradiation (λ ≥ 350 nm). The influencing factors such as APAP concentration, pH, GO dosage, water matrixes (Cl-, NO3-, HCO3-, SO42-, Ca2+, Fe3+and fulvic acid) were investigated. At a GO dosage of 100 mg L-1 and an initial pH of 7, the APAP (5 µM) photodegradation kinetic constant kobs was calculated to be 0.4547 min-1. In practical applications, the GO photocatalysis system still degrade over 90% APAP within 60 min in real surface water. The electron spin resonance and radical scavenging experiments revealed that the dominated active species for degrading APAP was photogenerated holes (h+), while other mechanisms (1O2 and O2•-/HO2•) played a minor role. Furthermore, the photochemical transformation of some other typical PPCPs were comparatively studied to reveal the relationship between degradation kinetics and molecular structure. Based on descriptive variables including molar refractive index parameter, octanol-water partition coefficient, dissociation constant and dipole moment, a quantitative structural-activity relationship (QSAR) model for predicting pseudo-first-order rate constants was established with a high significance (R2 = 0.996, p < 0.05). This study helps to understand the interaction between GO and PPCPs and its effects on the photochemical transformation of PPCPs in water.


Asunto(s)
Acetaminofén , Luz Solar , Agua , Fotoquímica
4.
PLoS One ; 17(5): e0268033, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35522649

RESUMEN

BACKGROUND: Pain management is currently important in neonatal intensive care unit (NICU). The superiority in pain relief of the combined oral sucrose (OS) and nonnutritive sucking (NNS) to other single intervention has not been well established. The administration of sucrose has been considered to potentially induce adverse events, which has been controversial. This study aims to investigate the combined effects and safety in comparison with other single intervention methods, including NNS, OS alone, breast milk and oral glucose. METHODS: We searched databases including Medline (via Pubmed), Embase (via Ovid), web of science, and Cochrane Library for randomized controlled trials from Jan 1, 2000 to Mar 31, 2021. The data were analyzed in the meta-analysis using Review manager Version 5.3. Pain score was the primary outcome in this meta-analysis. The adverse events were assessed qualitatively. RESULTS: A total of 16 studies were eligible in the meta-analysis. The results demonstrated a significant reduction in pain score in the NNS+OS group compared with NNS alone (SMD = -1.69, 95%CI, -1.69,-0.65) or sucrose alone (SMD = -1.39, 95% CI, -2.21,-0.57) during the painful procedures. When compared NNS+OS with breast milk, no significant difference was detected (SMD = -0.19, 95% CI: -0.5, 0.11). CONCLUSION: The combined effects of NNS and OS might be superior to other single intervention method. However, the effects might be mild for moderate-to-severe pain.


Asunto(s)
Manejo del Dolor , Sacarosa , Femenino , Humanos , Lactante , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Dolor , Manejo del Dolor/métodos , Dimensión del Dolor , Conducta en la Lactancia , Sacarosa/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA