Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Biomed Rep ; 20(4): 59, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38414628

RESUMEN

Bruxism is a non-functional involuntary muscle activity that affects more than one-third of the population at some point in their lives. A number of factors have been found to be related to the etiopathogenesis of bruxism; therefore, the condition is considered multifactorial. The most commonly accepted factor is stress. Stress has long been considered to increase muscle tone and to reduce the pain threshold. Current evidence indicates that exposure to chronic stress, distress and allostatic load ignite neurological degeneration and the attenuation of critical neuronal pathways that are highly implicated in the orofacial involuntary muscle activity. The present review discusses the negative effects that chronic stress exerts on certain parts of the central nervous system and the mechanisms through which these changes are involved in the etiopathogenesis of bruxism. The extent of these morphological and functional changes on nerves and neuronal tracts provides valuable insight into the obstacles that need to be overcome in order to achieve successful treatment. Additionally, particular emphasis is given on the effects of bruxism on the central nervous system, particularly the activation of the hypothalamic-pituitary-adrenal axis, as this subsequently induces an increase in circulating corticosterone levels, also evidenced by increased levels of salivary cortisol, thereby transforming bruxism into a self-reinforcing loop.

2.
Exp Ther Med ; 26(6): 563, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37954114

RESUMEN

Stress has been well-documented to have a significant role in the etiopathogenesis of bruxism. Activation of the hypothalamic-pituitary-adrenal axis (HPA) and subsequent release of corticosteroids lead to increased muscle activity. Neurological studies have demonstrated that chronic stress exposure induces neurodegeneration of important neuronal structures and destabilization of the mesocortical dopaminergic pathway. These disruptions impair the abilities to counteract the overactivity of the HPA axis and disinhibit involuntary muscle activity, while at the same time, there is activation of the amygdala. Recent evidence shows that overactivation of the amygdala under stressful stimuli causes rhythmic jaw muscle activity by over activating the mesencephalic and motor trigeminal nuclei. The present review aimed to discuss the negative effects of certain vitamin and mineral deficiencies, such as vitamin D, magnesium, and omega-3 fatty acids, on the central nervous system. It provides evidence on how such insufficiencies may increase stress sensitivity and neuromuscular excitability and thereby reduce the ability to effectively respond to the overactivation of the sympathetic nervous system, and also how stress can in turn lead to these insufficiencies. Finally, the positive effects of individualized supplementation are discussed in the context of diminishing anxiety and oxidative stress, neuroprotection and in the reversal of neurodegeneration, and also in alleviating/reducing neuromuscular symptoms.

3.
ChemMedChem ; 18(22): e202300322, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37792577

RESUMEN

The oncogenic BRAFV600E kinase leads to abnormal activation of the MAPK signaling pathway and thus, uncontrolled cellular proliferation and cancer development. Based on our previous virtual screening studies which issued 2-acetamido-1,3 benzothiazole-6-carboxamide scaffold as active pharmacophore displaying selectivity against the mutated BRAF, eleven new substituted benzothiazole derivatives were designed and synthesized by coupling of 2-acetamidobenzo[d]thiazole-6-carboxylic acid with the appropriate amines in an effort to provide even more efficient inhibitors and tackle drug resistance often developed during cancer treatment. All derived compounds bore the benzothiazole scaffold substituted at position-2 by an acetamido moiety and at position-6 by a carboxamide functionality, the NH moiety of which was further linked through an alkylene linker to a sulfonamido (or amino) aryl (or alkyl) functionality or a phenylene linker to a sulfonamido aromatic (or non-aromatic) terminal pharmacophore in the order -C6 H4 -NHSO2 -R or reversely -C6 H4 -SO2 N(H)-R. These analogs were subsequently biologically evaluated as potential BRAFV600E inhibitors and antiproliferative agents in several colorectal cancer and melanoma cell lines. In all assays applied, one analog, namely 2-acetamido-N-[3-(pyridin-2-ylamino)propyl]benzo[d]thiazole-6-carboxamide (22), provided promising results in view of its use in drug development.


Asunto(s)
Antineoplásicos , Benzotiazoles , Línea Celular Tumoral , Benzotiazoles/farmacología , Antineoplásicos/farmacología , Proliferación Celular , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales
4.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298143

RESUMEN

The human body is an abundant source of multipotent cells primed with unique properties that can be exploited in a multitude of applications and interventions. Mesenchymal stem cells (MSCs) represent a heterogenous population of undifferentiated cells programmed to self-renew and, depending on their origin, differentiate into distinct lineages. Alongside their proven ability to transmigrate toward inflammation sites, the secretion of various factors that participate in tissue regeneration and their immunoregulatory function render MSCs attractive candidates for use in the cytotherapy of a wide spectrum of diseases and conditions, as well as in different aspects of regenerative medicine. In particular, MSCs that can be found in fetal, perinatal, or neonatal tissues possess additional capabilities, including predominant proliferation potential, increased responsiveness to environmental stimuli, and hypoimmunogenicity. Since microRNA (miRNA)-guided gene regulation governs multiple cellular functions, miRNAs are increasingly being studied in the context of driving the differentiation process of MSCs. In the present review, we explore the mechanisms of miRNA-directed differentiation of MSCs, with a special focus on umbilical cord-derived mesenchymal stem cells (UCMSCs), and we identify the most relevant miRNAs and miRNA sets and signatures. Overall, we discuss the potent exploitations of miRNA-driven multi-lineage differentiation and regulation of UCMSCs in regenerative and therapeutic protocols against a range of diseases and/or injuries that will achieve a meaningful clinical impact through maximizing treatment success rates, while lacking severe adverse events.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Embarazo , Femenino , Recién Nacido , Humanos , MicroARNs/genética , Diferenciación Celular/genética , Cordón Umbilical , Células Madre Multipotentes
5.
Life (Basel) ; 13(6)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37374142

RESUMEN

Complex signaling interactions between cancer cells and their microenvironments drive the clonal selection of cancer cells. Opposing forces of antitumor and tumorigenic potential regulate the survival of the fittest clones, while key genetic and epigenetic alterations in healthy cells force them to transform, overcome cell senescence, and proliferate in an uncontrolled manner. Both clinical samples and cancer cell lines provide researchers with an insight into the complex structure and hierarchy of cancer. Intratumor heterogeneity allows for multiple cancer cell subpopulations to simultaneously coexist within tumors. One category of these cancer cell subpopulations is cancer stem cells (CSCs), which possess stem-like characteristics and are not easily detectable. In the case of breast cancer, which is the most prevalent cancer type among females, such subpopulations of cells have been isolated and characterized via specific stem cell markers. These stem-like cells, known as breast cancer stem cells (BCSCs), have been linked to major events during tumorigenesis including invasion, metastasis and patient relapse following conventional therapies. Complex signaling circuitries seem to regulate the stemness and phenotypic plasticity of BCSCs along with their differentiation, evasion of immunosurveillance, invasiveness and metastatic potential. Within these complex circuitries, new key players begin to arise, with one of them being a category of small non-coding RNAs, known as miRNAs. Here, we review the importance of oncogenic miRNAs in the regulation of CSCs during breast cancer formation, promotion and metastasis, in order to highlight their anticipated usage as diagnostic and prognostic tools in the context of patient stratification and precision medicine.

6.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769317

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is a term collectively used to describe all cancers that develop in the oral and nasal cavities, the paranasal sinuses, the salivary glands, the pharynx, and the larynx. The majority (75%) of all newly diagnosed cases are observed in patients with locally advanced and aggressive disease, associated with significant relapse rates (30%) and poor prognostic outcomes, despite advances in multimodal treatment. Consequently, there is an unmet need for the identification and application of tools that would enable diagnosis at the earliest possible stage, accurately predict prognostic outcomes, contribute to the timely detection of relapses, and aid in the decision for therapy selection. Recent evidence suggests that DNA methylation can alter the expression of genes in a way that it favors tumorigenesis and tumor progression in HNSCC, and therefore represents a potential source for biomarker identification. This study summarizes the current knowledge on how abnormally methylated DNA profiles in HNSCC patients may contribute to the pathogenesis of HNSCC and designate the methylation patterns that have the potential to constitute clinically valuable biomarkers for achieving significant advances in the management of the disease and for improving survival outcomes in these patients.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Metilación de ADN , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Pronóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Recurrencia Local de Neoplasia/genética , Neoplasias de Cabeza y Cuello/diagnóstico , Neoplasias de Cabeza y Cuello/genética
7.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769087

RESUMEN

Head and neck cancer (HNC) is a term collectively used to describe a heterogeneous group of tumors that arise in the oral cavity, larynx, nasopharynx, oropharynx, and hypopharynx, and represents the sixth most common type of malignancy worldwide. Despite advances in multimodality treatment, the disease has a recurrence rate of around 50%, and the prognosis of metastatic patients remains poor. HNCs are characterized by a high degree of genomic instability, which involves a vicious circle of accumulating DNA damage, defective DNA damage repair (DDR), and replication stress. Nonetheless, the damage that is induced on tumor cells by chemo and radiotherapy relies on defective DDR processes for a successful response to treatment, and may play an important role in the development of novel and more effective therapies. This review summarizes the current knowledge on the genes and proteins that appear to be deregulated in DDR pathways, their implication in HNC pathogenesis, and the rationale behind targeting these genes and pathways for the development of new therapies. We give particular emphasis on the therapeutic targets that have shown promising results at the pre-clinical stage and on those that have so far been associated with a therapeutic advantage in the clinical setting.


Asunto(s)
Neoplasias de Cabeza y Cuello , Humanos , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/terapia , Terapia Combinada , Daño del ADN
8.
Mol Med Rep ; 26(5)2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36196882

RESUMEN

COVID­19 patients with severe infection have been observed to have elevated auto­antibodies (AAs) against angiotensin II receptor type 1 (AT1R) and endothelin (ET) 1 receptor type A (ETAR), compared with healthy controls and patients with favorable (mild) infection. AT1R and ETAR are G protein­coupled receptors, located on vascular smooth muscle cells, fibroblasts, immune and endothelial cells, and are activated by angiotensin II (Ang II) and ET1 respectively. AAs that are specific for these receptors have a functional role similar to the natural ligands, but with a more prolonged vasoconstrictive effect. They also induce the production of fibroblast collagen, the release of reactive oxygen species and the secretion of proinflammatory cytokines (including IL­6, IL­8 and TNF­α) by immune cells. Despite the presence of AAs in severe COVID­19 infected patients, their contribution and implication in the severity of the disease is still not well understood and further studies are warranted. The present review described the major vascular homeostasis systems [ET and renin­angiotensin­aldosterone system (RAAS)], the vital regulative role of nitric oxide, the AAs, and finally the administration of angiotensin II receptor blockers (ARBs), so as to provide more insight into the interplay that exists among these components and their contribution to the severity, prognosis and possible treatment of COVID­19.


Asunto(s)
COVID-19 , Enfermedades Vasculares , Angiotensina II , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Colágeno , Células Endoteliales , Endotelinas , Humanos , Interleucina-6 , Interleucina-8 , Óxido Nítrico , Especies Reactivas de Oxígeno , Receptor de Angiotensina Tipo 1 , Receptor de Endotelina A , Receptores de Angiotensina , Factor de Necrosis Tumoral alfa
9.
Cancers (Basel) ; 14(14)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35884419

RESUMEN

Bladder cancer (BCa) is one of the most prevalent cancers worldwide and accounts for high morbidity and mortality. This study intended to elucidate potential key biomarkers related to the occurrence, development, and prognosis of BCa through an integrated bioinformatics analysis. In this context, a systematic meta-analysis, integrating 18 microarray gene expression datasets from the GEO repository into a merged meta-dataset, identified 815 robust differentially expressed genes (DEGs). The key hub genes resulted from DEG-based protein-protein interaction and weighted gene co-expression network analyses were screened for their differential expression in urine and blood plasma samples of BCa patients. Subsequently, they were tested for their prognostic value, and a three-gene signature model, including COL3A1, FOXM1, and PLK4, was built. In addition, they were tested for their predictive value regarding muscle-invasive BCa patients' response to neoadjuvant chemotherapy. A six-gene signature model, including ANXA5, CD44, NCAM1, SPP1, CDCA8, and KIF14, was developed. In conclusion, this study identified nine key biomarker genes, namely ANXA5, CDT1, COL3A1, SPP1, VEGFA, CDCA8, HJURP, TOP2A, and COL6A1, which were differentially expressed in urine or blood of BCa patients, held a prognostic or predictive value, and were immunohistochemically validated. These biomarkers may be of significance as prognostic and therapeutic targets for BCa.

10.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897831

RESUMEN

Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.


Asunto(s)
Neoplasias de Cabeza y Cuello , MicroARNs , Infecciones por Papillomavirus , Biomarcadores , Biomarcadores de Tumor/genética , Neoplasias de Cabeza y Cuello/diagnóstico , Neoplasias de Cabeza y Cuello/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Medicina de Precisión
11.
Cells ; 11(7)2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35406666

RESUMEN

Preclinical toxicity screening is the first and most crucial test that assesses the safety of new candidate drugs before their consideration for further evaluation in clinical trials. In vitro drug screening using stem cells has lately arisen as a promising alternative to the "gold standard" of animal testing, but their suitability and performance characteristics in toxicological studies have so far not been comprehensively investigated. In this study, we focused on the evaluation of human mesenchymal stem cells isolated from the matrix (Wharton's jelly) of fetal umbilical cord (WJSCs), which bear enhanced in vitro applicability due to their unique biological characteristics. In order to determine their suitability for drug-related cytotoxicity assessment, we adopted a high-throughput methodology that evaluated their sensitivity to a selected panel of chemicals in different culture environments. Cytotoxicity was measured within 48 h by means of MTS and/or NRU viability assays, and was compared directly (in vitro) or indirectly (in silico) to adult human mesenchymal stem cells and to reference cell lines of human and murine origin. Our data clearly suggest that human WJSCs can serve as a robust in vitro alternative for acute drug toxicity screening by uniquely combining rapid and versatile assay setup with high-throughput analysis, good representation of human toxicology, high reproducibility, and low cost.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Células Madre Mesenquimatosas , Gelatina de Wharton , Animales , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Reproducibilidad de los Resultados , Cordón Umbilical
12.
Mol Med Rep ; 25(6)2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35485285

RESUMEN

Male infertility is a global problem affecting a considerable part of the male population. Current guidelines and practices aimed at diagnosing the cause of this problem still have low diagnostic yield. As novel candidate genes for infertility emerge, their functional role needs to be investigated in patient populations. The present study aimed to investigate testis­specific serine kinase 1B (TSSK1B), which was discovered in a previously diagnosed patient. Sanger sequencing of the coding regions and exon borders of TSSK1B was performed in a cohort of 100 male Bulgarian patients with unresolved infertility causes. Missense mutations were discovered in 10% of patients and were associated with clinical data on sperm dysmorphology. Two previously unreported mutations were discovered, p.3D>N and p.52F>L. All mutations were scored via in silico predictors and protein modelling using AlphaFold2. The present findings indicated an association between TSSK1B mutations and asthenoteratozoospermia, with further missense mutations in patients with azoospermia and teratozoospermia. Mutations in TSSK1B may be a cause of undiagnosed cases of male infertility and should be considered when molecular diagnostics are warranted.


Asunto(s)
Azoospermia , Infertilidad Masculina , Proteínas Serina-Treonina Quinasas/genética , Femenino , Humanos , Infertilidad Masculina/diagnóstico , Infertilidad Masculina/genética , Masculino , Mutación , Testículo
13.
Cancers (Basel) ; 14(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35158934

RESUMEN

Cancer is the second leading cause of death globally. One of the main hallmarks in cancer is the functional deregulation of crucial molecular pathways via driver genetic events that lead to abnormal gene expression, giving cells a selective growth advantage. Driver events are defined as mutations, fusions and copy number alterations that are causally implicated in oncogenesis. Molecular analysis on tissues that have originated from a wide range of anatomical areas has shown that mutations in different members of several pathways are implicated in different cancer types. In recent decades, significant efforts have been made to incorporate this knowledge into daily medical practice, providing substantial insight towards clinical diagnosis and personalized therapies. However, since there is still a strong need for more effective drug development, a deep understanding of the involved signaling mechanisms and the interconnections between these pathways is highly anticipated. Here, we perform a systemic analysis on cancer patients included in the Pan-Cancer Atlas project, with the aim to select the ten most highly mutated signaling pathways (p53, RTK-RAS, lipids metabolism, PI-3-Kinase/Akt, ubiquitination, b-catenin/Wnt, Notch, cell cycle, homology directed repair (HDR) and splicing) and to provide a detailed description of each pathway, along with the corresponding therapeutic applications currently being developed or applied. The ultimate scope is to review the current knowledge on highly mutated pathways and to address the attractive perspectives arising from ongoing experimental studies for the clinical implementation of personalized medicine.

14.
Mol Med Rep ; 24(2)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34184084

RESUMEN

Taurine is a fundamental mediator of homeostasis that exerts multiple roles to confer protection against oxidant stress. The development of hypertension, muscle/neuro­â€‹associated disorders, hepatic cirrhosis, cardiac dysfunction and ischemia/reperfusion are examples of some injuries that are linked with oxidative stress. The present review gives a comprehensive description of all the underlying mechanisms of taurine, with the aim to explain its anti­oxidant actions. Taurine is regarded as a cytoprotective molecule due to its ability to sustain normal electron transport chain, maintain glutathione stores, upregulate anti­oxidant responses, increase membrane stability, eliminate inflammation and prevent calcium accumulation. In parallel, the synergistic effect of taurine with other potential therapeutic modalities in multiple disorders are highlighted. Apart from the results derived from research findings, the current review bridges the gap between bench and bedside, providing mechanistic insights into the biological activity of taurine that supports its potential therapeutic efficacy in clinic. In the future, further clinical studies are required to support the ameliorative effect of taurine against oxidative stress.


Asunto(s)
Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Taurina/farmacología , Animales , Antioxidantes/fisiología , Antioxidantes/uso terapéutico , Cardiopatías/tratamiento farmacológico , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Humanos , Hepatopatías/tratamiento farmacológico , Enfermedades Musculares/tratamiento farmacológico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Taurina/fisiología , Taurina/uso terapéutico
15.
Cancers (Basel) ; 13(2)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430276

RESUMEN

BACKGROUND: Taurine (Tau) ameliorates cancer pathogenesis. Researchers have focused on the functional properties of bromamine T (BAT), a stable active bromine molecule. Both N-bromotaurine (TauNHBr) and BAT exert potent anti-inflammatory properties, but the landscape remains obscure concerning the anti-cancer effect of BAT. METHODS: We used Crystal Violet, colony formation, flow cytometry and Western blot experiments to evaluate the effect of BAT and Tau on the apoptosis and autophagy of cancer cells. Xenograft experiments were used to determine the in vivo cytotoxicity of either agent. RESULTS: We demonstrated that both BAT and Tau inhibited the growth of human colon, breast, cervical and skin cancer cell lines. Among them, BAT exerted the greatest cytotoxic effect on both RKO and MDA-MB-468 cells. In particular, BAT increased the phosphorylation of c-Jun N-terminal kinases (JNK½), p38 mitogen-activated protein kinase (MAPK), and extracellular-signal-regulated kinases (ERK½), thereby inducing mitochondrial apoptosis and autophagy in RKO cells. In contrast, Tau exerted its cytotoxic effect by upregulating JNK½ forms, thus triggering mitochondrial apoptosis in RKO cells. Accordingly, colon cancer growth was impaired in vivo. CONCLUSIONS: BAT and Tau exerted their anti-tumor properties through the induction of (i) mitochondrial apoptosis, (ii) the MAPK family, and iii) autophagy, providing novel anti-cancer therapeutic modalities.

16.
Med Int (Lond) ; 1(2): 3, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36699147

RESUMEN

To develop novel therapeutic methods for both diabetic and renal disorders, scientists had initially focused on elucidating the molecular mechanisms of taurine in established cell lines and mouse models. Although a large amount of data have been revealed, taurine has been confirmed to be the next step of novel promising therapeutic interventions against diabetic disorders. Taurine appears to ameliorate diabetes 1-related complications in various organs through its antioxidant, anti-inflammatory and anti-hormonal actions. In type 2 diabetes, taurine has been positively implicated in glucose homeostasis, exerting potent hypoglycemic, anti-obesity, hypotensive and hypolipidemic effects. Of particular interest is that taurine provides protection against renal dysfunction, including hypertension and proteinuria, specific glomerular and tubular disorders, acute and chronic renal conditions, and diabetic nephropathy. The ameliorative effects of taurine against renal disorders are based on its osmoregulatory properties, its association with signaling pathways and its association with the renin-angiotensin-aldosterone system (RAAS). Further clinical studies are required to ensure the importance of research findings.

17.
Pathol Res Pract ; 217: 153276, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33249398

RESUMEN

Melanoma is an aggressive form of cancer with poor prognosis therefore, identification of associated pathophysiological mechanisms is imperative towards the development of new therapeutic strategies. The KLK6 is a serine protease normally expressed in the epidermis. Recently, we found that elimination of Klk6 in mice results in enhanced resistance to chemically induced non-melanoma skin cancer. To delineate putative roles of KLK6 in melanoma, the invasive KLK6-non-expressing MDA-MB-435 melanoma cell line was stably transfected with the full-length KLK6 cDNA and expression of the corresponding RNA and protein were confirmed. Interestingly, restoration of KLK6 expression resulted in markedly suppressed growth of primary tumors when orthotopically implanted in SCID mice. Analysis of data retrieved from the human protein atlas revealed that melanomas with high KLK6 expression have a trend for longer survival. Collectively, we suggest that KLK6 inhibits growth of melanomas.


Asunto(s)
Calicreínas/biosíntesis , Melanoma/enzimología , Neoplasias Cutáneas/enzimología , Animales , Neoplasias de la Mama , Línea Celular Tumoral , Inducción Enzimática , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Calicreínas/genética , Melanoma/genética , Melanoma/patología , Ratones SCID , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Carga Tumoral
18.
Cancers (Basel) ; 12(6)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570918

RESUMEN

Epithelial-mesenchymal transition (EMT) is a process involved not only in morphogenesis and embryonic development, but also in cancer progression, whereby tumor cells obtain a more aggressive metastatic phenotype. Anterior gradient protein 2 (AGR2) maintains the epithelial phenotype and blocks the induction of EMT, thus playing an undeniable role in tumor progression. However, the mechanism through which AGR2 expression is regulated, not only during EMT, but also in the early stages of cancer development, remains to be elucidated. In the present study, we show an inverse correlation of AGR2 with ZEB1 (zinc finger enhancer binding protein, δEF1) that was verified by analysis of several independent clinical data sets of lung adenocarcinomas. We also identified the ZEB1 binding site within the AGR2 promoter region and confirmed AGR2 as a novel molecular target of ZEB1. The overexpression of ZEB1 decreased the promoter activity of the AGR2 gene, which resulted in reduced AGR2 protein level and the acquisition of a more invasive phenotype of these lung cancer cells. Conversely, silencing of ZEB1 led not only to increased levels of AGR2 protein, but also attenuated the invasiveness of tumor cells. The AGR2 knockout, vice versa, increased ZEB1 expression, indicating that the ZEB1/AGR2 regulatory axis may function in a double negative feedback loop. In conclusion, we revealed for the first time that ZEB1 regulates AGR2 at the transcriptional level, while AGR2 presence contributes to ZEB1 mRNA degradation. Thus, our data identify a new regulatory mechanism between AGR2 and ZEB1, two rivals in the EMT process, tightly associated with the development of metastasis.

19.
Transl Oncol ; 12(7): 932-950, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31096110

RESUMEN

Development of novel bioactive compounds against KRAS and/or BRAF mutant colorectal cancer (CRC) is currently an urgent need in oncology. In addition, single or multitarget kinase inhibitors against MEK/ERK and PI3K/AKT pathways are of potential therapeutic advantage. A new compound based on the benzothiophene nucleus was synthesized, based on previous important outcomes on other pharmaceutical preparations, to be tested as potential anticancer agent. Treatments by 2-5 µM DPS-2 of several CRC and melanoma cell lines bearing either BRAF or KRAS mutations have shown a remarkable effect on cell viability in 2D and 3D cultures. More detailed analysis has shown that DPS-2 can kill cancer cells by apoptosis, reducing at the same time their autophagy properties. After testing activities of several signaling pathways, the compound was found to have a dual inhibition of two major proliferative/survival pathways, MEK/ERK and PI3K/AKT, in both CRC and melanoma, thus providing a mechanistic evidence for its potent anticancer activity. Antitumor activity of DPS-2 was further validated in vivo, as DPS-2 treatment of mouse xenografts of Colo-205 colorectal cancer cells remarkably reduced their tumor formation properties. Our findings suggest that DPS-2 has significant anti-KRAS/ anti-BRAF mutant CRC activity in preclinical models, potentially providing a novel treatment strategy for these difficult-to-treat tumors, which needs to be further exploited.

20.
Mol Oncol ; 13(11): 2329-2343, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30980596

RESUMEN

Kallikrein-related peptidase 6 (KLK6) is a serine protease normally expressed in mammary tissue and aberrantly regulated in breast cancer. At physiological levels, KLK6 functions as a suppressor of breast cancer, while its aberrant overexpression (> 50-fold higher than normal) is characteristic of a subset of breast cancers and has been linked to accelerated growth of primary breast tumors in severe combined immunodeficiency mice (Pampalakis et al. Cancer Res 2009, 69, 3779). Here, we investigated the molecular mechanisms underlying the concentration-dependent functions of KLK6 by comparing MDA-MB-231 stable transfectants expressing increasing levels of KLK6 in in vitro and in vivo tumorigenicity assays (soft agar, xenograft growth, tail vein metastasis). Quantitative proteomics was applied to identify proteins that are altered upon re-expression of KLK6 in MDA-MB-231 at normal or constitutive levels. Overexpression of KLK6 is associated with increased metastatic ability of breast cancer cells into lungs, increased expression of certain S100 proteins (S100A4, S100A11) and keratins (KRT), and downregulation of the apoptosis-related proteases CASP7 and CASP8, and RABs. On the other hand, KLK6 re-expression at physiological levels leads to inhibition of lung metastases associated with suppression of S100 proteins (S100A4, S100A10, S100A13, S100A16) and induced CASP7 and CASP8 expression. As this is the first report that KLK6 expression is associated with S100 proteins, caspases, RABs, and KRTs, we validated this finding in clinical datasets. By integrating proteomics and microarray data from breast cancer patients, we generated two composite scores, KLK6 + S100B-S100A7 and KLK6 + S100B-S100A14-S100A16, to predict long-term survival of breast cancer patients. We present previously unknown pathways implicating KLK6 in breast cancer. The findings promise to aid our understanding of the functional roles of KLK6 in breast cancer and may yield new biomarkers for the cancer types in which KLK6 is known to be aberrantly upregulated.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Calicreínas/metabolismo , Transducción de Señal , Animales , Apoptosis , Neoplasias de la Mama/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones SCID , Proteínas de Neoplasias/metabolismo , Fenotipo , Proteínas S100/metabolismo , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...