Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(15): 10715-10725, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37000601

RESUMEN

Recently, BiCuOTe as a promising thermoelectric material has attracted extensive interest due to its lower thermal conductivity and higher electrical conductivity. However, little is known about the role of point defects in the growth, processing, and device degradation of this material. Moreover, the elastic properties which provide valuable information about the bonding characteristics, heat conductivity, and their anisotropic characters are investigated for effective design and characterization of new devices. Motivated by these considerations, a first-principles study about the stability of point defects and their effects on the thermal-mechanical properties of BiCuOTe was performed. The vacancies are found to be more stable than the interstitials. XO (here X occupying the O lattice site, with X = Cu, Bi or Te) are generally unfavorable among the considered point defects. Point defects generally have negative effects on elastic constants (except C66), suggesting that the resistance of defective systems to uniaxial and shear deformation is usually weaker than the that of ideal BiCuOTe. Similarly, point defects could deteriorate the ability to resist external compression. However, the introduction of point defects may improve the elastic compliances and depress the Debye temperature, which may increase the thermal expansion efficient of BiCuOTe. As compared with the ideal system, the point defects such as CuBi, TeBi, BiTe, OCu, CuTe and TeCu may generally reduce the phonon thermal conductivity. This study would provide insights into the effect of point defects on the elastic and thermal properties of BiCuOTe and has important implications in the rational design of superior thermoelectric materials.

2.
Langmuir ; 39(7): 2719-2728, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36753560

RESUMEN

Thermoelectric (TE) performance of the Janus ZrSSe monolayer under biaxial strain is systematically explored by the first-principles approach and Boltzmann transport theory. Our results show that the Janus ZrSSe monolayer has excellent chemical, dynamical, thermal, and mechanical stabilities, which provide a reliable platform for strain tuning. The electronic structure and TE transport parameters of the Janus ZrSSe monolayer can be obviously tuned by biaxial strain. Under 2% tensile strain, the optimal power factor PF of the n-type-doped Janus ZrSSe monolayer reaches 46.36 m W m-1 K-2 at 300 K. This value is higher than that of the most classical TE materials. Under 6% tensile strain, the maximum ZT values for the p-type- and n-type-doped Janus ZrSSe monolayers are 4.41 and 4.88, respectively, which are about 3.83 and 1.49 times the results of no strain, respectively. Such high TE performance can be attributed to high band degeneracy and short phonon relaxation time under strain, causing simultaneous increase of the Seebeck coefficient and suppression of the phonon thermal transport. Present work demonstrates that the Janus ZrSSe monolayer is a promising candidate as a strain-tunable TE material and stimulates further experimental synthesis.

3.
J Colloid Interface Sci ; 639: 14-23, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36804787

RESUMEN

In this work, a strategy to boosting thermoelectric (TE) performance of 2D materials is explored. We find that, appropriate chemical adsorption of atoms can effectively increase the TE performance of HfSe2 monolayer. Our results show that the adsorption of Ni atom on HfSe2 monolayer (Ni-HfSe2) can improve the optimal power factor PF and ZT at 300 K, increased by more than ∼67% and ∼340%, respectively. The PF and ZT of Ni-HfSe2 at 300 K can reach 85.06 mW m-1 K-2 and 3.09, respectively. The detailed study reveal that the adsorption of Ni atom can induce additional conductional channels of electrons, enhance the coupling of acoustic-optical phonons and the phonon anharmonicity, resulting in an obvious increment of electrical conductivity (increased by more than ∼89%) in n-type doped system and an ultralow phonon thermal conductivity (1.17 W/mK at 300 K). The high electrical conductivity and ultralow phonon thermal conductivity results in the significant increments of PF and ZT. Our study also shows that, Ni-HfSe2 is a thermal, dynamic and mechanical stable structure, which can be employed in TE application. Our research indicates that selectivity chemical adsorption is a promising way to increase TE performance of 2D materials.

4.
Nanomaterials (Basel) ; 10(2)2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079269

RESUMEN

GaAs has been demonstrated to be a promising material for manufacturing semiconductor light-emitting devices and integrated circuits. It has been widely used in the field of aerospace, due to its high electron mobility and wide band gap. In this study, the structural and photoelectric characteristics of Si-doped GaAs under different gamma irradiation doses (0, 0.1, 1 and 10 KGy) are investigated. Surface morphology studies show roughen of the surface with irradiation. Appearance of transverse-optical (TO) phonon mode and blueshift of TO peak reflect the presence of internal strain with irradiation. The average strain has been measured to be 0.009 by Raman spectroscopy, indicating that the irradiated zone still has a good crystallinity even at a dose of 10 KGy. Photoluminescence intensity is increased by about 60% under 10 KGy gamma irradiation due to the strain suppression of nonradiative recombination centers. Furthermore, the current of Si-doped GaAs is reduced at 3V bias with the increasing gamma dose. This study demonstrates that the Si-doped GaAs has good radiation resistance under gamma irradiation, and appropriate level of gamma irradiation can be used to enhance the luminescence property of Si-doped GaAs.

5.
Opt Express ; 27(6): 8983-8993, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31052708

RESUMEN

The formation of laser-induced periodic surface structures (LIPSS) on two different dielectrics of K9 glass and fused silica upon irradiation in ambient conditions and in vacuum with multiple femtosecond (fs) laser pulse sequences at different pulse durations (35 fs, 260 fs, and 500 fs) was studied experimentally. Three types of LIPSS, so-called high-spatial-frequency LIPSS (HSFL), low-spatial-frequency LIPSS (LSFL), and supra-wavelength periodic surface structures (SWPSS) with different spatial periods and orientations were identified. The appearance was characterized with respect to the experimental parameters of laser fluence and number of laser pulses per spot. The crater morphologies - including nanoripples, periodic microgrooves, quasiperiodic microspikes, and central smooth zone - were observed by scanning electron microscope (SEM). The supra-wavelength structures exhibit periodicities, which are markedly, even multiple times, higher than the laser excitation wavelength. The SWPSS were formed with a broader range of laser fluences, upon the longer laser pulse durations (260 fs and 500 fs) and/or on the lower band-gap dielectrics (K9 glass), due to the deeper effective light penetration depths and thicker viscous surface layers formation. The HSFL were observed on the higher band-gap dielectrics (fused silica) and within a certain narrow laser parameter window. The formation mechanisms of LIPSS were also discussed.

6.
Sci Rep ; 7(1): 8108, 2017 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-28808280

RESUMEN

Three kinds of Al-TiO2 samples and pure TiO2 samples were synthesized via a modified polyacrylamide gel route using different aluminum salts, including Al2(SO4)3∙18H2O, AlCl3, and Al(NO3)3∙9H2O under identical conditions. The influence of different aluminum salts on the phase purity, morphologies, thermal stability of anatase and photocatalytic properties of the as-prepared Al-TiO2 nanoparticles were studied. The energy gap (Eg) of Al-TiO2 nanoparticles decreases due to Al ion doping into TiO2. The photocatalytic activities of the Al-TiO2 samples were investigated by the degradation of acid orange 7 dye in aqueous solution under simulated solar irradiation. The Al-TiO2 nanoparticles prepared from Al(NO3)3∙9H2O exhibit the best photocatalytic activity among the four kinds of samples, followed in turn by the Al-TiO2 nanoparticles prepared with AlCl3, Al2(SO4)3∙18H2O and pure TiO2. The different performances are attributed to complex effects of Eg, particle size, surface morphology, phase purity and the defect sites of the Al-TiO2 nanoparticles.

7.
Sci Rep ; 5: 12849, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26238034

RESUMEN

Three ZnAl2O4 samples were prepared via a modified polyacrylamide gel method using a citric acid solution with different aluminum salt starting materials, including AlCl3 ∙ 6H2O, Al2(SO4)3 ∙ 18H2O, and Al(NO3)3 ∙ 9H2O under identical conditions. The influence of different aluminum salts on the morphologies, phase purity, and optical and fluorescence properties of the as-prepared ZnAl2O4 nanoparticles were studied. The experimental results demonstrate that the phase purity, particle size, morphology, and optical and fluorescence properties of ZnAl2O4 nanoparticles can be manipulated by the use of different aluminum salts as starting materials. The energy bandgap (Eg) values of ZnAl2O4 nanoparticles increase with a decrease in particle size. The fluorescence spectra show that a major blue emission band around 400 nm and two weaker side bands located at 410 and 445 nm are observed when the excitation wavelength is 325 nm. The ZnAl2O4 nanoparticles prepared from Al(NO3)3 ∙ 9H2O exhibit the largest emission intensity among the three ZnAl2O4 samples, followed in turn by the ZnAl2O4 nanoparticles prepared from Al2(SO4)3 ∙ 18H2O and AlCl3∙6H2O. These differences are attributed to combinational changes in Eg and the defect types of the ZnAl2O4 nanoparticles.

8.
J Hazard Mater ; 285: 368-74, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25528236

RESUMEN

A surface acoustic wave (SAW) resonator with ZnO/SiO2 (ZS) composite film was used as an ammonia sensor in this study. ZS composite films were deposited on the surface of SAW devices using the sol-gel method, and were characterized using SEM, AFM, and XRD. The performance of the sensors under ammonia gas was optimized by adjusting the molar ratio of ZnO:SiO2 to 1:1, 1:2 and 1:3, and the sensor with the ratio of ZnO to SiO2 equaling to 1:2 was found to have the best performance. The response of sensor was 1.132 kHz under 10 ppm NH3, which was much higher than that of the sensor based on a pristine ZnO film. Moreover, the sensor has good selectivity, reversibility and stability at room temperature. These can be attributed to the enhanced absorption of ammonia and unique surface reaction on composite films due to the existence of silica.


Asunto(s)
Amoníaco/análisis , Dióxido de Silicio/química , Óxido de Zinc/química , Amoníaco/química , Sonido
9.
J Hazard Mater ; 280: 127-33, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25151235

RESUMEN

Surface acoustic wave (SAW) sensors based on Co3O4/SiO2 composite sensing films for ammonia detection were investigated at room temperature. The Co3O4/SiO2 composite films were deposited onto ST-cut quartz SAW resonators by a sol-gel method. SEM and AFM characterizations showed that the films had porous structures. The existence of SiO2 was found to enhance the ammonia sensing property of the sensor significantly. The sensor based on a Co3O4/SiO2 composite film, with 50% Co3O4 loading, which had the highest RMS value (3.72), showed the best sensing property. It exhibited a positive frequency shift of 3500 Hz to 1 ppm ammonia as well as excellent selectivity, stability and reproducibility at room temperature. Moreover, a 37% decrease in the conductance of the composite film as well as a positive frequency shift of 12,500 Hz were observed when the sensor was exposed to 20 ppm ammonia, indicating the positive frequency shift was derived from the decrease in film conductance.


Asunto(s)
Contaminantes Atmosféricos/análisis , Amoníaco/análisis , Cobalto/química , Monitoreo del Ambiente/instrumentación , Óxidos/química , Dióxido de Silicio/química
10.
Nanotechnology ; 19(8): 085714, 2008 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-21730745

RESUMEN

We studied a method of heat-assisted magnetic recording (HAMR). The recording medium is a strongly coupled Co/Pt multilayered thin film, suitable for perpendicular recording. Field emission current from a scanning tunneling microscope (STM) tip is used as the heating source. Pulse voltages of 5 V were applied to the film. Experimental results show that an average mark size of 100-120 nm was achieved, with the minimum being 45 nm. Models of domain stability and dynamic domain formation are built to quantitatively explain the experimental results. They agree well with experiments. The models give us future directions for achieving small marks for ultra-high recording density.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...