Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 92(16): 161802, 2004 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-15169217

RESUMEN

The anomalous magnetic moment of the negative muon has been measured to a precision of 0.7 ppm (ppm) at the Brookhaven Alternating Gradient Synchrotron. This result is based on data collected in 2001, and is over an order of magnitude more precise than the previous measurement for the negative muon. The result a(mu(-))=11 659 214(8)(3) x 10(-10) (0.7 ppm), where the first uncertainty is statistical and the second is systematic, is consistent with previous measurements of the anomaly for the positive and the negative muon. The average of the measurements of the muon anomaly is a(mu)(exp)=11 659 208(6) x 10(-10) (0.5 ppm).

2.
Phys Rev Lett ; 87(11): 111804, 2001 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-11531514

RESUMEN

Following a suggestion from Kostelecký et al., we evaluated a test of CPT and Lorentz invariance from the microwave spectroscopy of muonium. Hamiltonian terms beyond the standard model violating CPT and Lorentz invariance would contribute frequency shifts deltanu(12) and deltanu(34) to nu(12) and nu(34), the two transitions involving muon spin flip, which were precisely measured in ground state muonium in a strong magnetic field of 1.7 T. The shifts would be indicated by anticorrelated oscillations in nu(12) and nu(34) at the Earth's sidereal frequency. No time dependence was found in nu(12) or nu(34) at the level of 20 Hz, limiting the size of some CPT and Lorentz-violating parameters at the level of 2x10(-23) GeV.

3.
Phys Rev Lett ; 86(11): 2227-31, 2001 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-11289896

RESUMEN

A precise measurement of the anomalous g value, a(mu) = (g-2)/2, for the positive muon has been made at the Brookhaven Alternating Gradient Synchrotron. The result a(mu+) = 11 659 202(14) (6) x 10(-10) (1.3 ppm) is in good agreement with previous measurements and has an error one third that of the combined previous data. The current theoretical value from the standard model is a(mu)(SM) = 11 659 159.6(6.7) x 10(-10) (0.57 ppm) and a(mu)(exp) - a(mu)(SM) = 43(16) x 10(-10) in which a(mu)(exp) is the world average experimental value.

4.
Phys Rev Lett ; 84(6): 1136-9, 2000 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-11017462

RESUMEN

The 1s-2s interval has been measured in the muonium (&mgr;(+)e(-)) atom by Doppler-free two-photon pulsed laser spectroscopy. The frequency separation of the states was determined to be 2 455 528 941.0(9.8) MHz, in good agreement with quantum electrodynamics. The result may be interpreted as a measurement of the muon-electron charge ratio as -1-1.1(2.1)x10(-9). We expect significantly higher accuracy at future high flux muon sources and from cw laser technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...