Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 329: 121775, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38286528

RESUMEN

Nanocellulose (NC), a one-dimensional nanomaterial, is considered a sustainable material for water and wastewater purification because of its promising hydrophilic surface and mechanical characteristics. In this regard, nanostructured membranes comprising NC and two-dimensional (2D) nanomaterials emerged as advanced membranes for efficient and sustainable water purification. This article critically reviews the recent progress on NC-2D nanostructured membranes for water and wastewater treatment. The review highlights the main techniques employed to fabricate NC-2D nanostructured membranes. The physicochemical properties, including hydrophilicity, percent porosity, surface roughness, structure, and mechanical and thermal stability, are summarized. The key performance indicators such as permeability, rejection, long operation stability, antifouling, and interaction mechanisms are thoroughly discussed to evaluate the role of NC and 2D nanomaterials. Finally, summary points and future development work are highlighted to overcome the challenges for potential practical applications. This review contributes to the design and development of advanced membranes to solve growing water pollution concerns in a sustainable manner.

2.
Environ Sci Pollut Res Int ; 30(50): 109162-109180, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37770741

RESUMEN

Antibiotic-contaminated water is a crucial issue worldwide. Thus, in this study, the MgFeCa-layered double hydroxides were supported in date palm-derived biochar (B) using co-precipitation, hydrothermal, and co-pyrolysis methods. It closes gaps in composite design for pharmaceutical pollutant removal, advances eco-friendly adsorbents, and advances targeted water cleanup by investigating synthesis methodologies and gaining new insights into adsorption. The prepared B-MgFeCa composites were investigated for tetracycline (TC) adsorption from an aqueous solution. The B-MgFeCa composites synthesized through co-precipitation and hydrothermal methods exhibited better crystallinity, functional groups, and well-developed LDH structure within the biochar matrix. However, the co-pyrolysis method resulted in the LDH structure breakage, leading to the low crystalline composite material. The maximum adsorption of TC onto all B-MgFeCa was obtained at an acidic pH range (4-5). The B-MgFeCa composites produced via hydrothermal and co-pyrolysis methods showed higher and faster TC adsorption than the co-precipitation method. The kinetic results can be better described by Langmuir kinetic and mixed order models at low and high TC concentrations, indicating that the rate-limiting step is mainly associated with active binding sites adsorption. The Sip and Freundlich models showed better fitting with the equilibrium data. The TC removal by B-MgFeCa composites prepared via hydrothermal, the highest estimated uptake which is around 639.76 mg.g-1 according to the Sips model at ambient conditions, and co-pyrolysis was mainly dominated by physical and chemical interactions. The composite obtained via the co-precipitation method adsorbed TC through chemical bonding between surface functional groups with anionic species of TC molecule. The B-MgFeCa composite showed excellent reusability performance for up to five cycles with only a 30% decrease in TC removal efficiency. The results demonstrated that B-MgFeCa composites could be used as promising adsorbent materials for effective wastewater treatment.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Adsorción , Contaminantes Químicos del Agua/análisis , Tetraciclina/química , Antibacterianos , Carbón Orgánico/química , Hidróxidos/química , Cinética
3.
Environ Manage ; 71(4): 795-808, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36087146

RESUMEN

In this study, the residual pods of the forest species Erythrina speciosa were carbonized with ZnCl2 to obtain porous activated carbon and investigated for the adsorptive removal of the drug paracetamol (PCM) from water. The PCM adsorption onto activated carbon is favored at acidic solution pH. The isothermal studies confirmed that increasing the temperature from 298 to 328 K decreased the adsorption capacity from 65 mg g-1 to 50.4 mg g-1 (C0 = 175 mg L-1). The Freundlich model showed a better fit of the equilibrium isotherms. Thermodynamic studies confirmed the exothermic nature (ΔH0 = -39.1066 kJ mol-1). Kinetic data indicates that the external mass transfer occurs in the first minutes followed by the surface diffusion, considering that the linear driving force model described the experimental data. The application of the material in the treatment of a simulated effluent with natural conditions was promising, presenting a removal of 76.45%. Therefore, it can be concluded that the application of residual pods of the forest species Erythrina speciosa carbonized with ZnCl2 is highly efficient in the removal of the drug paracetamol and also in mixtures containing other pharmaceutical substances.


Asunto(s)
COVID-19 , Erythrina , Contaminantes Químicos del Agua , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Adsorción , Acetaminofén , Cinética , Analgésicos , Concentración de Iones de Hidrógeno
4.
Chemosphere ; 307(Pt 4): 136054, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36007742

RESUMEN

In this work, engineered biochar decorated layered double hydroxides and cellulose nanocrystals (B-CuFe-CNC) biocomposites were synthesized by the facile ultrasonicated-co-precipitation technique. The biocomposite was investigated for purification of Eriochrome Black T (EBT) dye from water. The characterization results showed that the presence of CNC in biochar-layered double hydroxides resulted in a two-dimensional rod-like structure with excellent crystallinity, improved surface functionalities, and provides an attractive platform for the enhanced adsorption of azo anionic dye molecules. The adsorption system was appropriately demonstrated by the BBD-RSM (R2 > 0.994). The biocomposite exhibited higher EBT adsorption in the acidic pH range (2-5) due to strong electrostatic and chemical interactions. The kinetic and isotherm results were well demonstrated by pseudo-second order, Freundlich, and Redlich Peterson models. The maximum adsorption capacity of biocomposite was 876.2 mg/g achieved within 45 min. The spectroscopic analyses imply that the high removal of EBT by biocomposite is mainly governed by electrostatic attraction, hydrogen bonding, and chemical/metal complexation mechanisms. The biocomposite maintained high EBT removal after six successive adsorption cycles and excellent dye adsorption in the different water matrices. The results suggest that tailoring biochar properties with layered double hydroxide and CNC is a promising way for the enhanced removal of dye contaminants from wastewater.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Adsorción , Compuestos Azo , Celulosa , Carbón Orgánico , Hidróxidos/química , Cinética , Aguas Residuales/química , Agua/análisis , Contaminantes Químicos del Agua/análisis
5.
Materials (Basel) ; 15(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955279

RESUMEN

The Kingdom of Saudi Arabia generates an enormous amount of date palm waste, causing severe environmental concerns. Green and strong concrete is increasingly demanded due to low carbon footprints and better performance. In this research work, biochar derived from locally available agriculture waste (date palm fronds) was used as an additive to produce high-strength and durable concrete. Mechanical properties such as compressive and flexural strength were evaluated at 7, 14, and 28 days for control and all other mixes containing biochar. In addition, the durability properties of the concrete samples for the mixes were investigated by performing electric resistivity and ultra-sonic pulse velocity testing. Finally, a SWOT (strengths, weaknesses, opportunities, and threats) analysis was carried out to make strategic decisions about biochar's use in concrete. The results demonstrated that the compressive strength of concrete increased to 28−29% with the addition of 0.75−1.5 wt% of biochar. Biochar-concrete containing 0.75 wt% of biochar showed 16% higher flexural strength than the control specimen. The high ultrasonic pulse velocity (UPV) values (>7.79 km/s) and low electrical resistivity (<22.4 kΩ-cm) of biochar-based concrete confirm that the addition of biochar resulted in high-quality concrete free from internal flaws, cracks, and better structural integrity. SWOT analysis indicated that biochar-based concrete possessed improved performance than ordinary concrete, is suitable for extreme environments, and has opportunities for circular economy and applications in various construction designs. However, cost and technical shortcomings in biochar production and biochar-concrete mix design are still challenging.

6.
Environ Res ; 209: 112861, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35143802

RESUMEN

In this research work, a novel hybrid composite consisting of biochar (B), layered double hydroxide (CuFe) and chitosan (CS) (B-CuFe-CS) was produced using an ultrasonication-assisted co-precipitation method. The resultant composite was employed for adsorptive removal of Eriochrome black T (EBT) from water. Physicochemical characterization indicated that the B-CuFe-CS containing 10 wt % CS exhibited a heterogeneous structure with better crystallographic and textural characteristics. The B-CuFe-CS with abundant surface functionalities (-CO, -C-O, -OH, -NO3, and MMO), facilitates faster and enhanced removal of the EBT. The kinetic results showed better fitting to the pseudo-second order model, and equilibrium was achieved within 30 min. Equilibrium data was well explained by Langmuir and Redlich Peterson isotherm models (R2 > 0.98), indicating the EBT removal onto B-CuFe-CS followed monolayer adsorption. The maximum adsorption capacity was 806.4 mg/g, which was higher than pristine B-CuFe (476.19 mg/g) and many other adsorbents. The spectroscopic analysis (FTIR and XPS) and experimental results suggested that EBT adsorption is mainly governed by electrostatic, chemical and anion-exchange interactions. It is evident from these results that coupling B-CuFe composite with bio-filler (chitosan) resulted in an efficient bio-adsorbent to effectively purify dye-contaminated water streams.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Adsorción , Compuestos Azo , Carbón Orgánico , Quitosano/química , Concentración de Iones de Hidrógeno , Hidróxidos/química , Cinética , Agua , Contaminantes Químicos del Agua/análisis
7.
Environ Res ; 204(Pt C): 112243, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34688648

RESUMEN

In the last three decades, pharmaceutical research has increased tremendously to offer safe and healthy life. However, the high consumption of these harmful drugs has risen devastating impact on ecosystems. Therefore, it is worldwide paramount concern to effectively clean pharmaceuticals contaminated water streams to ensure safer environment and healthier life. Nanotechnology enables to produce new, high-technical material, such as membranes, adsorbent, nano-catalysts, functional surfaces, coverages and reagents for more effective water and wastewater cleanup processes. Nevertheless, nano-sorbent materials are regarded the most appropriate treatment technology for water and wastewater because of their facile application and a large number of adsorbents. Several conventional techniques have been operational for domestic wastewater treatment but are inefficient for pharmaceuticals removal. Alternatively, adsorption techniques have played a pivotal role in water and wastewater treatment for a long, but their rise in attraction is proportional with the continuous emergence of new micropollutants in the aquatic environment and new discoveries of sustainable and low-cost adsorbents. Recently, advancements in adsorption technique for wastewater treatment through nanoadsorbents has greatly increased due to its low production cost, sustainability, better physicochemical properties and high removal performance for pharmaceuticals. Herein, this review critically evaluates the performance of sustainable green nanoadsorbent for the remediation of pharmaceutical pollutants from water. The influential sorption parameters and interaction mechanism are also discussed. Moreover, the future prospects of nanoadsorbents for the remediation of pharmaceuticals are also presented.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Ecosistema , Preparaciones Farmacéuticas , Aguas Residuales/análisis , Agua , Contaminantes Químicos del Agua/análisis
8.
Chemosphere ; 289: 133196, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34890621

RESUMEN

In recent years, considerable attention has been paid to the beneficial utilization of sewage sludge to reduce the risks associated with sludge disposal. Besides other applications of sludge, biochar produced from sludge has also been employed for the elimination of various pollutants from water. This review critically evaluates the recent progress in applications of sludge-based biochar for the adsorption of pharmaceuticals from water. The synthesis techniques of biochar production from sludge and their effects on physicochemical characteristics of produced biochar are discussed. The removal of various pharmaceuticals by sludge-based biochar are described in detail, with the emphasis on the adsorption mechanism and their reusability potential. It is evident from the literature that sludge-based biochar has demonstrated excellent potential for the adsorption of numerous pharmaceuticals from the aqueous phase. The major hurdles and issues related to the synthesis of sludge-based biochar and applications are highlighted, with reference to the adsorption of pharmaceuticals. Finally, a roadmap is suggested along with future research directions to ensure the sustainable production of biochar from sludge and its applications in water treatment.


Asunto(s)
Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis
9.
Molecules ; 26(14)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34299541

RESUMEN

A sewage sludge-based activated carbon (SBAC) intercalated MgAlFe ternary layered double hydroxide (SBAC-MgAlFe-LDH) composite was synthesized via the coprecipitation method. The adsorptive performance of the composite for phenol uptake from the aqueous phase was evaluated via the response surface methodology (RSM) modeling technique. The SBAC-MgAlFe-LDH phenol uptake capacity data were well-fitted to reduced RSM cubic model (R2 = 0.995, R2-adjusted = 0.993, R2-predicted = 0.959 and p-values < 0.05). The optimum phenol adsorption onto the SBAC-MgAlFe-LDH was achieved at 35 °C, 125 mg/L phenol, and pH 6. Under the optimal phenol uptake conditions, pseudo-first-order and Avrami fractional-order models provided a better representation of the phenol uptake kinetic data, while the equilibrium data models' fitting follows the order; Liu > Langmuir > Redlich-Peterson > Freundlich > Temkin. The phenol uptake mechanism was endothermic in nature and predominantly via a physisorption process (ΔG° = -5.33 to -5.77 kJ/mol) with the involvement of π-π interactions between the phenol molecules and the functionalities on the SBAC-LDH surface. The maximum uptake capacity (216.76 mg/g) of SBAC-MgAlFe-LDH was much higher than many other SBAC-based adsorbents. The improved uptake capacity of SBAC-LDH was attributed to the effective synergetic influence of SBAC-MgAlFe-LDH, which yielded abundant functionalized surface groups that favored higher aqueous phase uptake of phenol molecules. This study showcases the potential of SBAC-MgAlFe-LDH as an effective adsorbent material for remediation of phenolic wastewater.

10.
Nanomaterials (Basel) ; 11(4)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918847

RESUMEN

Penicillin G is an old and widely used antibiotic. Its persistence in the environment started to appear in many environmental samples and food chains. The removal of these emerging pollutants has been a challenging task for scientists in the last decades. The photocatalytic properties of Cd2+ doped Manganese- Zinc NSFs with chemical formula (Mn0.5Zn0.5)[CdxFe2-x]O4 (0.0 ≤ x ≤ 0.05) NSFs are herein evaluated. The Manganese- Zinc N.S.F.s nanomaterials were deeply characterized, utilizing UV-Vis (reflectance) spectroscopy, X-ray diffraction, N2 adsorption isotherm measurements, and S.E.M., SEM-EDX mapping, and T.E.M. The Kinetic model for the photodegradation of penicillin G (as a model molecule) is investigated using visible light as a source of energy. The kinetic study shows that our results fit well with the modified pseudo-first-order model. The Pen G degradation are 88.73%, 66.65%, 44.70%, 37.62% and 24.68% for x = 0.5, 0.4, 0.3, 0.2 and 0.1, respectively, against 14.68% for the free Cd spinel sample. The pseudo-rate constant is bandgap dependent. From the intra-diffusion rate constant (Kd), we developed an intra-diffusion time (τ) model, which decreases exponentially as a function of (x) and mainly shows the existence of three different domains versus cadmium coordination in spinel ferrite samples. Hence, Cadmium's presence generates spontaneous polarization with a strong opportunity to monitor the charge separation and then open the route to a new generation of "assisted" photocatalysts under visible light.

11.
J Oral Sci ; 63(2): 125-128, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33361691

RESUMEN

PURPOSE: To evaluate the degree of conversion (DoC) of self-adhesive resin luting cements when irradiated through different fiber post lengths. METHODS: A total of 60 teeth were sectioned to achieve lengths of 4 mm, 7 mm, and 10 mm, while 60 fiber posts were trimmed to give 3 mm, 6 mm, and 9 mm lengths. Post space was created to accommodate the fiber post and 1 mm of luting cement apically. Two self-adhesive resin luting cements (Multilink Speed and RelyX U200) were used. A total of four cycles of 20 s irradiation was done with an attenuated total reflectance Fourier transform infrared spectroscopy reading between each cycle. RESULTS: The mean ± standard deviation DoC achieved with a light-emitting diode and quartz tungsten halogen for Multilink Speed was 67.4 ± 2.7% and 72.4 ± 4.0%, respectively, while for RelyX U200, the corresponding values were 56.5 ± 2.7% and 62.0 ± 3.8%, respectively. For Multilink Speed, there was no significant difference between the control and the 3 mm group, while for RelyX U200, no significant difference was found between the 6 mm and 9 mm groups. All the other groups showed significant differences. CONCLUSION: The DoC reduced as the post length increased.


Asunto(s)
Recubrimiento Dental Adhesivo , Técnica de Perno Muñón , Cementos Dentales , Materiales Dentales , Cementos de Ionómero Vítreo , Ensayo de Materiales , Cementos de Resina
12.
Bioresour Technol ; 319: 124128, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32979597

RESUMEN

Biochar/layered double hydroxide (LDH) composites have gained considerable attention in recent times as low-cost sustainable materials for applications in water treatment. This paper critically evaluates the latest development in applications of biochar/LDH composites in water treatment with an emphasis on adsorption and catalytic degradation of various pollutants. The adsorption of various noxious contaminants, i.e., heavy metals, dyes, anions, and pharmaceuticals onto biochar/LDH composites are described in detail by elaborating the adsorption mechanism and regeneration ability. The synergistic effect of LDH with biochar exhibited significant improvement in specific surface area, surface functional groups, structure heterogeneity, stability, and adsorption characteristics of the resulting biochar/LDH composites. The major hurdles and challenges associated with the synthesis and applications of biochar/LDH composites in water remediation are emphasized. Finally, a roadmap is suggested for future research to assure the effective applications of biochar/LDH composites in water purification.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Hidróxidos , Contaminantes Químicos del Agua/análisis
13.
Polymers (Basel) ; 12(11)2020 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-33113873

RESUMEN

In the last two decades, the application of microwave heating to the processing of materials has to become increasingly widespread. Microwave-assisted foaming processes show promise for industrial commercialization due to the potential advantages that microwaves have shown compared to conventional methods. These include reducing process time, improved energy efficiency, solvent-free foaming, reduced processing steps, and improved product quality. However, the interaction of microwave energy with foaming materials, the effects of critical processing factors on microwave foaming behavior, and the foamed product's final properties are still not well-explored. This article reviews the mechanism and principles of microwave foaming of different materials. The article critically evaluates the impact of influential foaming parameters such as blowing agent, viscosity, precursor properties, microwave conditions, additives, and filler on the interaction of microwave, foaming material, physical (expansion, cellular structure, and density), mechanical, and thermal properties of the resultant foamed product. Finally, the key challenges and opportunities for developing industrial microwave foaming processes are identified, and areas for potential future research works are highlighted.

14.
Nanomaterials (Basel) ; 10(7)2020 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-32664637

RESUMEN

This experimental work focused on the synthesis, characterization, and testing of a unique, magnetically separable, and eco-friendly adsorbent composite material for the advanced treatment and efficient removal of nitrate and phosphate pollutants from wastewater. The MgAl-augmented double-layered hydroxide (Mg-Fe/LDH) intercalated with sludge-based activated carbon (SBAC-MgFe) composites were characterized by FT-IR, XRD, BET, VSM, SEM, and TEM techniques, revealing homogeneous and efficient dispersion of MgFe/LDH within the activated carbon (AC) matrix, a highly mesoporous structure, and superparamagnetic characteristics. The initial solution pH, adsorbent dose, contact time, and temperature parameters were optimized in order to reach the best removal performance for both pollutants. The maximum adsorption capacities of phosphate and nitrate were found to be 110 and 54.5 mg/g, respectively. The competition between phosphate and coexisting ions (Cl-, CO32-, and SO42-) was studied and found to be remarkably lower in comparison with the nitrate adsorption. The adsorption mechanisms were elucidated by kinetic, isotherm, thermodynamic modeling, and post-adsorption characterizations of the composite. Modeling and mechanistic studies demonstrated that physisorption processes such as electrostatic attraction and ion exchange mainly governed the nitrate and phosphate adsorption. The composite indicated an outstanding regeneration performance even after five sequences of adsorption/desorption cycles. The fabricated composite with magnetically separable characteristics can be used as a promising adsorbent for the removal of phosphate and nitrate pollutants from wastewater.

16.
Nanomaterials (Basel) ; 10(2)2020 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-32079126

RESUMEN

In this study, date-palm biochar MgAl-augmented double-layered hydroxide (biochar-MgAl-LDH) nanocomposite was synthesized, characterized, and used for enhancing the removal of phosphate and nitrate pollutants from wastewater. The biochar-MgAl-LDH had higher selectivity and adsorption affinity towards phosphate compared to nitrate. The adsorption kinetics of both anions were better explained by the pseudo-first-order model with a faster removal rate to attain equilibrium in a shorter time, especially at lower initial phosphate-nitrate concentration. The maximum monolayer adsorption capacities of phosphate and nitrate by the non-linear Langmuir model were 177.97 mg/g and 28.06 mg/g, respectively. The coexistence of anions (Cl-, SO42-, NO3-, CO32- and HCO3-) negligibly affected the removal of phosphate due to its stronger bond on the nano-composites, while the presence of Cl- and PO43- reduced the nitrate removal attributed to the ions' participation in the active adsorption sites on the surface of biochar-MgAl-LDH. The excellent adsorptive performance is the main synergetic influence of the MgAl-LDH incorporation into the biochar. The regeneration tests confirmed that the biochar-MgAl composite can be restored effortlessly and has the prospective to be reused after several subsequent adsorption-desorption cycles. The biochar-LDH further demonstrated capabilities for higher removal of phosphate and nitrate from real wastewater.

17.
Environ Sci Pollut Res Int ; 25(34): 34319-34331, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30298353

RESUMEN

Date palm ash (DPA) and MgAl-layered double hydroxide (LDH) composites were synthesized by the co-precipitation method and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET). The DPA-MgAl-LDH (DPA/MgAl) composites were employed for the removal of methyl orange (MO) and eriochrome black-T (EBT) from aqueous phase. Incorporation of 33.33% (w/w) DPA into the layers of MgAl increased the surface area from 44.46 to 140.65 m2/g, which leads to the improved adsorption performance. The maximum adsorption capacity of DPA/MgAl (1:2) at 298 K was 242.98 and 425.16 (mg/g) for MO and EBT, respectively. The adsorption data of dyes were adequately fitted by a pseudo-second-order and Langmuir isotherm model. The composite showed excellent reusability performance up to three cycles. Addition of DPA into MgAl-LDH resulted in an effective low-cost adsorbent for decontamination of dyes from wastewater. Graphical abstract ᅟ.


Asunto(s)
Compuestos Azo/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Colorantes/aislamiento & purificación , Concentración de Iones de Hidrógeno , Hidróxidos/química , Cinética , Microscopía Electrónica de Rastreo , Modelos Químicos , Phoeniceae/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Difracción de Rayos X
18.
J Hazard Mater ; 342: 58-68, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28822250

RESUMEN

The occurrences of heavy metal contaminated sites and soils and the need for devising environmentally friendly solutions have become global issues of serious concern. In this study, polyaspartate (a highly biodegradable agent) was synthesized using L-Aspartic acid via a new modified thermal procedure and employed for extraction of cadmium ions (Cd) from contaminated soil. Response surface methodology approach using 35 full faced centered central composite design was employed for modeling, evaluating and optimizing the influence of polyaspartate concentration (36-145mM), polyaspartate/soil ratio (5-25), initial heavy metal concentration (100-500mg/kg), initial pH (3-6) and extraction time (6-24h) on Cd ions extracted into the polyaspartate solution and its residual concentration in the treated soil. The Cd extraction efficacy obtained reached up to 98.8%. Increase in Cd extraction efficiency was associated with increase in the polyaspartate and Cd concentration coupled with lower polyaspertate/soil ratio and initial pH. Under the optimal conditions characterized with minimal utilization of the polyaspartate and high Cd ions removal, the extractible Cd in the polyaspartate solution reached up to 84.4mg/L which yielded 85% Cd extraction efficacy. This study demonstrates the suitability of using polyaspartate as an effective environmentally friendly chelating agent for Cd extraction from contaminated soils.

19.
Artículo en Inglés | MEDLINE | ID: mdl-28934127

RESUMEN

Due to their industrial relevance, phenolic compounds (PC) are amongst the most common organic pollutants found in many industrial wastewater effluents. The potential detrimental health and environmental impacts of PC necessitate their removal from wastewater to meet regulatory discharge standards to ensure meeting sustainable development goals. In recent decades, one of the promising, cost-effective and environmentally benign techniques for removal of PC from water streams has been adsorption onto sewage sludge (SS)-based activated carbon (SBAC). This is attributed to the excellent adsorptive characteristics of SBAC and also because the approach serves as a strategy for sustainable management of huge quantities of different types of SS that are in continual production globally. This paper reviews conversion of SS into activated carbons and their utilization for the removal of PC from water streams. Wide ranges of topics which include SBAC production processes, physicochemical characteristics of SBAC, factors affecting PC adsorption onto SBAC and their uptake mechanisms as well as the regeneration potential of spent SBAC are covered. Although chemical activation techniques produce better SBAC, yet more research work is needed to harness advances in material science to improve the functional groups and textural properties of SBAC as well as the low performance of physical activation methods. Studies focusing on PC adsorptive performance on SBAC using continuous mode (that are more relevant for industrial applications) in both single and multi-pollutant aqueous systems to cover wide range of PC are needed. Also, the potentials of different techniques for regeneration of spent SBAC used for adsorption of PC need to be assessed in relation to overall economic evaluation within realm of environmental sustainability using life cycle assessment.


Asunto(s)
Carbón Orgánico/química , Fenoles/química , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...