Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(38): 26879-26891, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37692354

RESUMEN

Nanosized spinel ferrites Co1-xNixFe2O4 (where x = 0.0-1.0) or CNFO have been produced using a chemical method. The crystal structure's characteristics have been determined through the utilization of X-ray diffraction (XRD). It has been demonstrated that all samples have a single phase with cubic syngony (space group Fd3̄m). The lattice parameter and unit cell volume behavior correlate well with the average ionic radii of Co2+ and Ni2+ ions and their coordination numbers. Thus, an increase in the Ni2+ content from x = 0.0 to x = 1.0 leads to a decrease in the lattice parameter (from 8.3805 to 8.3316 Å) and unit cell volume (from 58.86 to 57.83 Å3). Elastic properties have been investigated using Fourier transform infrared (FTIR) analysis. The peculiarities of the microwave properties have been analyzed by the measured S-parameters in the range of 8-18 GHz. It was assumed that the energy losses due to reflection are a combination of electrical and magnetic losses due to polarization processes (dipole polarization) and magnetization reversal processes in the region of inter-resonant processes. A significant attenuation of the reflected wave energy (-10 … -21.8 dB) opens broad prospects for practical applications.

2.
Sci Rep ; 10(1): 14411, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873846

RESUMEN

A new method for the specific surface energy investigation based on a combination of the force spectroscopy and the method of nanofriction study using atomic force microscopy was proposed. It was shown that air humidity does not affect the results of investigation by the proposed method as opposed to the previously used methods. Therefore, the method has high accuracy and repeatability in air without use of climate chambers and liquid cells. The proposed method has a high local resolution and is suitable for investigation of the specific surface energy of individual nanograins or fixed nanoparticles. The achievements described in the paper demonstrate one of the method capabilities, which is to control the growth mechanism of thin magnetic films. The conditions for the transition of the growth mechanism of thin Ni80Fe20 films from island to layer-by-layer obtained via electrolyte deposition have been determined using the proposed method and the purpose made probes with Ni coating.

3.
RSC Adv ; 10(54): 32638-32651, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35516497

RESUMEN

Herein, we investigated the correlation between the chemical composition, microstructure, and microwave properties of composites based on lightly Tb/Tm-doped Sr-hexaferrites (SrTb0.01Tm0.01Fe11.98O19) and spinel ferrites (AFe2O4, A = Co, Ni, Zn, Cu, or Mn), which were fabricated by a one-pot citrate sol-gel method. Powder XRD patterns of products confirmed the presence of pure hexaferrite and spinel phases. Microstructural analysis was performed based on SEM images. The average grain size for each phase in the prepared composites was calculated. Comprehensive investigations of dielectric properties (real (ε') and imaginary parts (ε'') of permittivity, dielectric loss tangent (tan(δ)), and AC conductivity) were performed in the 1-3 × 106 Hz frequency range at 20-120 °C. Frequency dependency of microwave properties were investigated using the coaxial method in frequency range of 2-18 GHz. The non-linear behavior of the main microwave properties with a change in composition may be due to the influence of the soft magnetic phase. It was found that Mn- and Ni-spinel ferrites achieved the strongest electromagnetic absorption. This may be due to differences in the structures of the electron shell and the radii of the A-site ions in the spinel phase. It was discovered that the ionic polarization transformed into the dipole polarization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...