Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(4): e0284215, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37058498

RESUMEN

Leptin is a hormone that plays a key role in controlling food intake and energy homeostasis. Skeletal muscle is an important target for leptin and recent studies have shown that leptin deficiency may lead to muscular atrophy. However, leptin deficiency-induced structural changes in muscles are poorly understood. The zebrafish has emerged as an excellent model organism for studies of vertebrate diseases and hormone response mechanisms. In this study, we explored ex-vivo magnetic resonance microimaging (µMRI) methods to non-invasively assess muscle wasting in leptin-deficient (lepb-/-) zebrafish model. The fat mapping performed by using chemical shift selective imaging shows significant fat infiltration in muscles of lepb-/- zebrafish compared to control zebrafish. T2 relaxation measurements show considerably longer T2 values in the muscle of lepb-/- zebrafish. Multiexponential T2 analysis detected a significantly higher value and magnitude of long T2 component in the muscles of lepb-/- as compared to control zebrafish. For further zooming into the microstructural changes, we applied diffusion-weighted MRI. The results show a significant decrease in the apparent diffusion coefficient indicating increased constraints of molecular movements within the muscle regions of lepb-/- zebrafish. The use of the phasor transformation for the separation of diffusion-weighted decay signals showed a bi-component diffusion system which allows us to estimate each fraction on a voxel-wise basis. A substantial difference was found between the ratio of two components in lepb-/- and control zebrafish muscles, indicating alterations in diffusion behavior associated with the tissue microstructural changes in muscles of lepb-/- zebrafish as compared to control zebrafish. Taken together, our results demonstrate that the muscles of lepb-/- zebrafish undergo significant fat infiltration and microstructural changes leading to muscle wasting. This study also demonstrates that µMRI provides excellent means to non-invasively study the microstructural changes in the muscles of the zebrafish model.


Asunto(s)
Leptina , Pez Cebra , Animales , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Músculo Esquelético/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Atrofia Muscular
2.
Sci Rep ; 12(1): 6341, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428752

RESUMEN

Ochratoxin A (OTA) is one of the most widespread mycotoxin contaminants of agricultural crops. Despite being associated with a range of adverse health effects, a comprehensive systems-level mechanistic understanding of the toxicity of OTA remains elusive. In the present study, metabolic profiling by high-resolution magic angle spinning (HRMAS) NMR, coupled to intact zebrafish embryos, was employed to identify metabolic pathways in relation to a systems-level model of OTA toxicity. Embryotoxicity was observed at sub-micromolar exposure concentrations of OTA. Localization of OTA, based on intrinsic fluorescence, as well as a co-localization of increased reactive oxygen species production, was observed in the liver kidney, brain and intestine of embryos. Moreover, HRMAS NMR showed significant alteration of metabolites related to targeting of the liver (i.e., hepatotoxicity), and pathways associated with detoxification and oxidative stress, and mitochondrial energy metabolism. Based on metabolic profiles, and complementary assays, an integrated model of OTA toxicity is, thus, proposed. Our model suggests that OTA hepatotoxicity compromises detoxification and antioxidant pathways, leading to mitochondrial membrane dysfunction manifested by crosstalk between pathways of energy metabolism. Interestingly, our data additionally aligns with a possible role of mitochondrial fusion as a "passive mechanism" to rescue mitochondrial integrity during OTA toxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Ocratoxinas , Animales , Metabolómica , Ocratoxinas/metabolismo , Ocratoxinas/toxicidad , Estrés Oxidativo , Pez Cebra/metabolismo
3.
Environ Pollut ; 265(Pt A): 114928, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32540561

RESUMEN

Owing to environmental health concerns, a number of per- and polyfluoroalkyl substances (PFAS) have been phased-out, and increasingly replaced by various chemical analogs. Most prominent among these replacements are numerous perfluoroether carboxylic acids (PFECA). Toxicity, and environmental health concerns associated with these next-generation PFAS, however, remains largely unstudied. The zebrafish embryo was employed, in the present study, as a toxicological model system to investigate toxicity of a representative sample of PFECA, alongside perfluorooctanoic acid (PFOA) as one of the most widely used, and best studied, of the "legacy" PFAS. In addition, high-resolution magic angle spin (HRMAS) NMR was utilized for metabolic profiling of intact zebrafish embryos in order to characterize metabolic pathways associated with toxicity of PFAS. Acute embryotoxicity (i.e., lethality), along with impaired development, and variable effects on locomotory behavior, were observed for all PFAS in the zebrafish model. Median lethal concentration (LC50) was significantly correlated with alkyl chain-length, and toxic concentrations were quantitatively similar to those reported previously for PFAS. Metabolic profiling of zebrafish embryos exposed to selected PFAS, specifically including PFOA and two representative PFECA (i.e., GenX and PFO3TDA), enabled elaboration of an integrated model of the metabolic pathways associated with toxicity of these representative PFAS. Alterations of metabolic profiles suggested targeting of hepatocytes (i.e., hepatotoxicity), as well as apparent modulation of neural metabolites, and moreover, were consistent with a previously proposed role of mitochondrial disruption and peroxisome proliferator-activated receptor (PPAR) activation as reflected by dysfunctions of carbohydrate, lipid and amino acid metabolism, and consistent with a previously proposed contribution of PFAS to metabolic syndrome. Taken together, it was generally concluded that toxicity of PFECA is quantitatively and qualitatively similar to PFOA, and these analogs, likewise, represent potential concerns as environmental toxicants.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Animales , Caprilatos , Ácidos Carboxílicos , Pez Cebra
4.
Toxins (Basel) ; 11(5)2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31071948

RESUMEN

Aflatoxin B1 (AFB1) is a widespread contaminant of grains and other agricultural crops and is globally associated with both acute toxicity and carcinogenicity. In the present study, we utilized nuclear magnetic resonance (NMR), and specifically high-resolution magic angle spin (HRMAS) NMR, coupled to the zebrafish (Danio rerio) embryo toxicological model, to characterize metabolic profiles associated with exposure to AFB1. Exposure to AFB1 was associated with dose-dependent acute toxicity (i.e., lethality) and developmental deformities at micromolar (≤ 2 µM) concentrations. Toxicity of AFB1 was stage-dependent and specifically consistent, in this regard, with a role of the liver and phase I enzyme (i.e., cytochrome P450) bioactivation. Metabolic profiles of intact zebrafish embryos exposed to AFB1 were, furthermore, largely consistent with hepatotoxicity previously reported in mammalian systems including metabolites associated with cytotoxicity (i.e., loss of cellular membrane integrity), glutathione-based detoxification, and multiple pathways associated with the liver including amino acid, lipid, and carbohydrate (i.e., energy) metabolism. Taken together, these metabolic alterations enabled the proposal of an integrated model of the hepatotoxicity of AFB1 in the zebrafish embryo system. Interestingly, changes in amino acid neurotransmitters (i.e., Gly, Glu, and GABA), as a key modulator of neural development, supports a role in recently-reported neurobehavioral and neurodevelopmental effects of AFB1 in the zebrafish embryo model. The present study reinforces not only toxicological pathways of AFB1 (i.e., hepatotoxicity, neurotoxicity), but also multiple metabolites as potential biomarkers of exposure and toxicity. More generally, this underscores the capacity of NMR-based approaches, when coupled to animal models, as a powerful toxicometabolomics tool.


Asunto(s)
Aflatoxina B1/toxicidad , Embrión no Mamífero/efectos de los fármacos , Metaboloma/efectos de los fármacos , Pez Cebra/metabolismo , Animales , Embrión no Mamífero/anomalías , Embrión no Mamífero/metabolismo , Cabeza/anomalías , Hígado/efectos de los fármacos , Hígado/metabolismo , Espectroscopía de Resonancia Magnética , Síndromes de Neurotoxicidad/metabolismo , Cola (estructura animal)/anomalías , Pez Cebra/anomalías , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...