Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542269

RESUMEN

Inflammatory bowel diseases are extremely common throughout the world. However, in most cases, it is asymptomatic at the initial stage. Therefore, it is important to develop non-invasive diagnostic methods that allow identification of the IBD risks in a timely manner. It is well known that gastrointestinal microbiota secrete volatile compounds (VOCs) and their composition may change in IBD. We propose a non-invasive method to identify the dynamics of IBD development in the acute and remission stage at the level of VOCs in model of dextran sulfate sodium (DSS) with chemically induced colitis measured by headspace GC/MS (HS GC/MS). Methods: VOCs profile was identified using a headspace GC/MS (HS GC/MS). GC/MS data were processed using MetaboAnalyst 5.0 and GraphPad Prism 8.0.1 software. The disease activity index (DAI) and histological method were used to assess intestinal inflammation. The peak of intestinal inflammation activity was reached on day 7, according to the disease activity index. Histological examination data showed changes in the intestine due to different stages of inflammation. As the acute inflammation stage was reached, the metabolomic profile also underwent changes, especially at the short-fatty acids level. A higher relative amounts of acetic acid (p value < 0.025) and lower relative amounts of propanoic acid (p value < 0.0005), butanoic acid (p value < 0.005) and phenol 4-methyl- (p value = 0.053) were observed in DSS7 group on day 7 compared to the control group. In remission stage, disease activity indexes decreased, and the histological picture also improved. But metabolome changes continued despite the withdrawal of the DSS examination. A lower relative amounts of propanoic acid (p value < 0.025), butanoic acid (p value < 0.0005), pentanoic acid (p value < 0.0005), and a significant de-crease of hexanoic acid (p value < 0.0005) relative amounts were observed in the DSS14 group compared to the control group on day 14. A model of DSS-induced colitis in rats was successfully implemented for metabolomic assessment of different stages of inflammation. We demonstrated that the ratios of volatile compounds change in response to DSS before the appearance of standard signs of inflammation, determined by DAI and histological examination. Changes in the volatile metabolome persisted even after visual intestine repair and it confirms the high sensitivity of the microbiota to the damaging effects of DSS. The use of HS GC/MS may be an important addition to existing methods for assessing inflammation at early stages.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratas , Animales , Ratones , Propionatos/efectos adversos , Cromatografía de Gases y Espectrometría de Masas , Modelos Animales de Enfermedad , Colitis/inducido químicamente , Colitis/diagnóstico , Colitis/patología , Inflamación/patología , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/patología , Butiratos/efectos adversos , Sulfato de Dextran/efectos adversos , Ratones Endogámicos C57BL , Colon/patología
2.
Genes (Basel) ; 15(2)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38397229

RESUMEN

The prevalence of mental disorders and how they are diagnosed represent some of the major problems in psychiatry. Modern genetic tools offer the potential to reduce the complications concerning diagnosis. However, the vast genetic diversity in the world population requires a closer investigation of any selected populations. In the current research, four polymorphisms, namely rs6265 in BDNF, rs10835210 in BDNF, rs6313 in HTR2A, and rs1800955 in DRD4, were analyzed in a case-control study of 2393 individuals (1639 patients with mental disorders (F20-F29, F30-F48) and 754 controls) from the European part of Russia using the TaqMan SNP genotyping method. Significant associations between rs6265 BDNF and rs1800955 DRD4 and mental impairments were detected when comparing the general group of patients with mental disorders (without separation into diagnoses) to the control group. Associations of rs6265 in BDNF, rs1800955 in DRD4, and rs6313 in HTR2A with schizophrenia in patients from the schizophrenia group separately compared to the control group were also found. The obtained results can extend the concept of a genetic basis for mental disorders in the Russian population and provide a basis for the future improvement in psychiatric diagnostics.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Esquizofrenia , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , Predisposición Genética a la Enfermedad , Estudios de Casos y Controles , Polimorfismo de Nucleótido Simple , Frecuencia de los Genes , Esquizofrenia/epidemiología , Esquizofrenia/genética , Receptores de Dopamina D4/genética
3.
ACS Chem Neurosci ; 15(3): 560-571, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38216514

RESUMEN

Vindeburnol (VIND, RU24722, BC19), a synthetic molecule derived from the eburnamine-vincamine alkaloid group, has many neuropsychopharmacological effects, but its antidepressant-like effects are poorly understood and have only been described in a few patents. To reliably estimate this effect, vindeburnol was studied in a model of long-term variable-frequency ultrasound (US) exposure at 20-45 kHz in male Wistar rats and BALB/c mice. Vindeburnol was administered chronically for 21 days against a background of simultaneous ultrasound exposure at a dose of 20 mg/kg intraperitoneally (IP). Using four behavioral tests, the sucrose preference test (SPT), the social interaction test (SIT), the open field test (OFT), and the forced swimming test (FST), we found that the treatment with the compound diminished depression-like symptoms in mice and rats. The compound restored the ultrasound-related reduced sucrose consumption to control levels and increased social interaction time in mice and rats compared with those in ultrasound-exposed animals. Vindeburnol showed contraversive results of horizontal and vertical activity in both species and generally did not increase locomotor activity. At the same time, the compound showed a specific effect in the FST, significantly reducing the immobility time. Moreover, we found an increase in norepinephrine, dopamine, and its metabolite levels in the brainstem, as well as an increase in dopamine, 3-methoxytyramine, and 3,4-dihydroxyphenylacetic acid levels in the striatum. We also observed a statistically significant increase in tyrosine hydroxylase (TH) levels in the region containing the locus coeruleus (LC). We suggest that using its distinct chemical structure and pharmacological activity as a starting point could boost antidepressant drug discovery.


Asunto(s)
Dopamina , Vincamina , Ratas , Ratones , Masculino , Animales , Dopamina/metabolismo , Depresión/tratamiento farmacológico , Ratas Wistar , Vincamina/farmacología , Antidepresivos/farmacología , Natación , Sacarosa , Modelos Animales de Enfermedad
4.
Dev Neurosci ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857257

RESUMEN

The development of animal models of mental disorders is an important task, since such models are useful for studying the neurobiological mechanisms of psychopathologies and for trial of new therapeutic drugs. One way to model pathologies of the nervous system is to impair fetal neurodevelopment through stress of the pregnant future mother, or prenatal stress. The use of variable frequency ultrasound in rodents is a promising method of imitating psychological stress, to which women in modern society are most often subjected. The aim of our study was to investigate the effect of prenatal stress induced by exposure to variable frequency ultrasound (US PS) throughout the gestational period on the adult rat offspring, namely to identify features of behavioral alterations and neurochemical brain parameters that can be associated with certain mental disorders in humans, to determine the possibility of creating a new model of psychopathology. Our study included a study of some behavioral characteristics of male and female rats in the elevated plus maze, open field test, object recognition test, social interaction test, sucrose preference test, latent inhibition test, Morris water maze, forced swimming test, acoustic startle reflex and prepulse inhibition tests. We also determined the activity of the serotonergic, dopaminergic, and noradrenergic neurotransmitter systems in the hippocampus and frontal cortex by HPLC-ED. Concentration of norepinephrine, dopamine, DOPAC, serotonin, and HIAA, as well as DOPAC/dopamine and HIAA/serotonin ratios were determined. A correlation analysis of behavioral and neurochemical parameters in male and female rats was performed based on the data obtained. The results of the study showed that US PS altered the behavioral phenotype of the rat offspring. US PS increased the level of anxious behavior, impaired orientation-research behavior, increased grooming activity, decreased the desire for social contacts, shifted behavioral reactions from social interaction to interaction with inanimate objects, impaired latent inhibition, and decreased the startle reflex. US PS activated the serotonergic, dopaminergic, and noradrenergic neurotransmitter systems of the rat frontal cortex and hippocampus. A correlation between neurochemical and behavioral parameters was revealed. Our study showed that US PS leads to a certain dysfunction on behavioral and neurochemical levels in rats that is most closely associated with symptoms of schizophrenia or autism. We hypothesize that this could potentially be an indicator of face validity for a model of psychopathology based on neurodevelopmental impairment.

5.
Front Pharmacol ; 13: 1033186, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532718

RESUMEN

Objectives: In the current study, we compared the effects of a single intranasal administration of clomipramine with effects of four neuropeptides, melatonin, oxytocin, orexin, and neuropeptide Y, to compare them in an acute stress model. Methods: The anti-stress effect was evaluated in the sucrose preference and forced swimming tests. Serum corticosterone level in rats was measured to evaluate the stress response. Results: Neuropeptide Y reduced immobilization time in the Porsolt test and decreased corticosterone levels, but increased the anhedonia. Orexin had no positive effect on animal behavior, but decreased corticosterone levels. Oxytocin decreased immobilization time, maintained anhedonia at the level of control, but did not affect corticosterone levels. Melatonin demonstrated no positive effects in any of the tests. Conclusion: The intranasal administered neuropeptide Y could be a promising compound for the treatment of stress disorders.

6.
Gels ; 8(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36547289

RESUMEN

The research was oriented towards the preparation of aerogel particles based on egg white and whey protein isolate using various dispersion methods: dripping, spraying, and homogenization. Based on the results of analytical studies, the most appropriate samples were selected to obtain aerogels loaded with the drug. The results of the experimental research were used to study methods for obtaining nasal drug delivery systems based on aerogels. Protein aerogels were obtained by thermal gelation followed by supercritical drying. The obtained particles of protein aerogels have a specific surface area of up to 350 m2/g with a pore volume of up to 2.9 cm3/g, as well as a porosity of up to 95%. The results of experimental studies have shown that changing the dispersion method makes it possible to control the structural characteristics of protein aerogel particles. The results of the studies were applied to obtain innovative nasal drug delivery systems for the treatment of socially significant diseases. Analytical studies were conducted to determine the amount and state of adsorbed drugs in protein aerogel particles, as well as in vivo experiments on the distribution of clomipramine in blood plasma and brain tissue of rats to study the pharmacokinetics and bioavailability of the resulting drug-loaded protein aerogel.

7.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36430976

RESUMEN

Mental disorders represent common brain diseases characterized by substantial impairments of social and cognitive functions. The neurobiological causes and mechanisms of psychopathologies still have not been definitively determined. Various forms of brain proteinopathies, which include a disruption of protein conformations and the formation of protein aggregates in brain tissues, may be a possible cause behind the development of psychiatric disorders. Proteinopathies are known to be the main cause of neurodegeneration, but much less attention is given to the role of protein impairments in psychiatric disorders' pathogenesis, such as depression and schizophrenia. For this reason, the aim of this review was to discuss the potential contribution of protein illnesses in the development of psychopathologies. The first part of the review describes the possible mechanisms of disruption to protein folding and aggregation in the cell: endoplasmic reticulum stress, dysfunction of chaperone proteins, altered mitochondrial function, and impaired autophagy processes. The second part of the review addresses the known proteins whose aggregation in brain tissue has been observed in psychiatric disorders (amyloid, tau protein, α-synuclein, DISC-1, disbindin-1, CRMP1, SNAP25, TRIOBP, NPAS3, GluA1, FABP, and ankyrin-G).


Asunto(s)
Encéfalo , Trastornos Mentales , Humanos , Encéfalo/metabolismo , Trastornos Mentales/metabolismo , Pliegue de Proteína , Conformación Proteica , Mitocondrias/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
8.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35455459

RESUMEN

We have previously described the LCGA-17 peptide as a novel anxiolytic and antidepressant candidate that acts through the α2δ VGCC (voltage-gated calcium channel) subunit with putative synergism with GABA-A receptors. The current study tested the potential efficacy of acute and chronic intranasal (i.n.) LCGA-17 (0.05 mg/kg and 0.5 mg/kg) in rats on predator odor-induced conditioned place aversion (POCPA), a model of post-traumatic stress disorder (PTSD), and chronic unpredictable stress (CUS) that produce a range of behavioral and physiological changes that parallel symptoms of depression in humans. CUS and LCGA-17 treatment effects were tested in the sucrose preference (SPT) social interaction (SI), female urine sniffing (FUST), novelty-suppressed feeding (NSFT), and forced swim (FST) tests. Analysis of the catecholamines content in brain structures after CUS was carried out using HPLC. The efficacy of i.n. LCGA-17 was also assessed using the Elevated plus-maze (EPM) and FST. Acute LCGA-17 administration showed anxiolytic and antidepressant effects in EPM and FST, similar to diazepam and ketamine, respectively. In the POCPA study, LCGA-17 significantly reduced place aversion, with efficacy greater than doxazosin. After CUS, chronic LCGA-17 administration reversed stress-induced alterations in numerous behavioral tests (SI, FUST, SPT, and FST), producing significant anxiolytic and antidepressant effects. Finally, LCGA-17 restored the norepinephrine levels in the hippocampus following stress. Together, these results support the further development of the LCGA-17 peptide as a rapid-acting anxiolytic and antidepressant.

9.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34502505

RESUMEN

BACKGROUND: Molecular mechanisms of depression remain unclear. The brain metabolome after antidepressant therapy is poorly understood and had not been performed for different routes of drug administration before the present study. Rats were exposed to chronic ultrasound stress and treated with intranasal and intraperitoneal clomipramine. We then analyzed 28 metabolites in the frontal cortex and hippocampus. METHODS: Rats' behavior was identified in such tests: social interaction, sucrose preference, forced swim, and Morris water maze. Metabolic analysis was performed with liquid chromatography. RESULTS: After ultrasound stress pronounced depressive-like behavior, clomipramine had an equally antidepressant effect after intranasal and intraperitoneal administration on behavior. Ultrasound stress contributed to changes of the metabolomic pathways associated with pathophysiology of depression. Clomipramine affected global metabolome in frontal cortex and hippocampus in a different way that depended on the route of administration. Intranasal route was associated with more significant changes of metabolites composition in the frontal cortex compared to the control and ultrasound groups while the intraperitoneal route corresponded with more profound changes in hippocampal metabolome compared to other groups. Since far metabolic processes in the brain can change in many ways depending on different routes of administration, the antidepressant therapy should also be evaluated from this point of view.


Asunto(s)
Clomipramina/farmacología , Depresión/tratamiento farmacológico , Administración Intranasal/métodos , Animales , Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Clomipramina/administración & dosificación , Depresión/fisiopatología , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Metaboloma/fisiología , Metabolómica/métodos , Actividad Motora/efectos de los fármacos , Ratas , Ratas Wistar , Estrés Psicológico/tratamiento farmacológico
10.
Front Physiol ; 12: 659366, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935805

RESUMEN

Fetal development is susceptible to environmental factors. One such factor is exposure to stress during pregnancy. The present study aimed to investigate the effects of chronic prenatal stress (PS) on the development and behavior of rat offspring during infancy and juvenile ages. Existing approaches to modeling prenatal stress on animals do not correlate with the main type of stress in pregnant women, namely psychological stress. We used a new stress paradigm in the experiment, namely, stress induced by exposure to variable frequency ultrasound (US), which acted on pregnant Wistar rats on gestational days 1-21. This type of stress in rodents can be comparable to psychological stress in humans. We assessed physical development, reflex maturation, motor ability development, anxious behavior, response to social novelty, and social play behavior in male and female offspring. Additionally, we investigated maternal behavior and the effect of neonatal handling (NH) on behavior. Prenatal stress did not affect postnatal developmental characteristics in rat pups, but prenatally stressed rats had higher body weight in early and adult age than controls. Prenatal exposure to a stressor increased anxiety in the open-field test (OF), changed social preferences in the social novelty test (SN), and impaired social play behavior in males. Neonatal handling reduced anxiety and restored social behavior, but evoked hyperactive behavior in rat pups. Maternal behavior did not change. Our study demonstrated for the first time that exposure to variable frequency ultrasound during pregnancy influences offspring development and impairs behavior, correlating with the effects of other types of stress during pregnancy in rodents. This supports the idea of using this exposure to model prenatal stress.

11.
Molecules ; 25(22)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202839

RESUMEN

Neuropsychiatric diseases are one of the main causes of disability, affecting millions of people. Various drugs are used for its treatment, although no effective therapy has been found yet. The blood brain barrier (BBB) significantly complicates drugs delivery to the target cells in the brain tissues. One of the problem-solving methods is the usage of nanocontainer systems. In this review we summarized the data about nanoparticles drug delivery systems and their application for the treatment of neuropsychiatric disorders. Firstly, we described and characterized types of nanocarriers: inorganic nanoparticles, polymeric and lipid nanocarriers, their advantages and disadvantages. We discussed ways to interact with nerve tissue and methods of BBB penetration. We provided a summary of nanotechnology-based pharmacotherapy of schizophrenia, bipolar disorder, depression, anxiety disorder and Alzheimer's disease, where development of nanocontainer drugs derives the most active. We described various experimental drugs for the treatment of Alzheimer's disease that include vector nanocontainers targeted on ß-amyloid or tau-protein. Integrally, nanoparticles can substantially improve the drug delivery as its implication can increase BBB permeability, the pharmacodynamics and bioavailability of applied drugs. Thus, nanotechnology is anticipated to overcome the limitations of existing pharmacotherapy of psychiatric disorders and to effectively combine various treatment modalities in that direction.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Precursor de Proteína beta-Amiloide/química , Animales , Ansiolíticos/administración & dosificación , Antidepresivos/administración & dosificación , Antipsicóticos/administración & dosificación , Trastornos de Ansiedad/tratamiento farmacológico , Trastorno Bipolar/tratamiento farmacológico , Barrera Hematoencefálica/efectos de los fármacos , Depresión/tratamiento farmacológico , Diseño de Fármacos , Emulsiones/química , Humanos , Lípidos/química , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Permeabilidad , Polímeros/química , Esquizofrenia/tratamiento farmacológico , Proteínas tau/química
12.
Neuropeptides ; 83: 102079, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32839007

RESUMEN

Oxytocin (OXT) and arginine-vasopressin (AVP) are structurally homologous peptide hormones synthesized in the hypothalamus. Nowadays, the role of OXT and AVP in the regulation of social behaviour and emotions is generally known. However, recent researches indicate that peptides also participate in cognitive functioning. This review presents the evidence that the OXT/AVP systems are involved in the formation of social, working, spatial and episodic memory, mediated by such brain structures as the hippocampal CA2 and CA3 regions, amygdala and prefrontal cortex. Some data have demonstrated that the OXT receptor's polymorphisms are associated with impaired memory in humans, and OXT knockout in mice is connected with memory deficit. Additionally, OXT and AVP are involved in mental disorders' progression. Stress-induced imbalance of the OXT/AVP systems leads to an increased risk of various mental disorders, including depression, schizophrenia, and autism. At the same time, cognitive deficits are observed in stress and mental disorders, and perhaps peptide hormones play a part in this. The final part of the review describes possible therapeutic strategies for the use of OXT and AVP for treatment of various mental disorders.


Asunto(s)
Arginina Vasopresina/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Trastornos Mentales/metabolismo , Oxitocina/metabolismo , Animales , Humanos
13.
Front Psychiatry ; 10: 830, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798476

RESUMEN

We investigated the associations of rs4680 COMT, rs6280 DRD3, and rs7322347 5HT2A with youth-onset schizophrenia in the Russian population in a case-control study, and the role of the genotype in the severity of clinical features. The association between rs7322347 and schizophrenia (p = 0.0001) is described for the first time. Furthermore, we found a link with rs6280 and rs4680 in females (p = 0.001 and p = 0.02 respectively) and with rs7322347 in males (p = 0.002). Clinical symptoms were assessed on three scales: the Clinician-Rated Dimensions of Psychosis Symptom Severity scale, Positive and Negative Syndrome Scale, and Frontal Assessment Battery. Gender differences in clinical features are of particular interest. In our study we found gender differences in the severity of clinical features-higher scores for delusions (Positive and Negative Syndrome Scale and Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition) in males and higher scores for depression, delusions, somatic concern, motor retardation, poor attention were found in females.

14.
Acta Neurobiol Exp (Wars) ; 79(3): 232-237, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31587015

RESUMEN

Emotional stress is considered a serious pathogenetic factor of depression. In this study an ultrasound model of emotional stress developed in our laboratory was applied. It is characterized by the use of ultrasound as the stressor agent. Animals are triggered not by any organic or physical disturbances but by the perception of adverse information. This type of stress can induce depressive-like behavioral changes in rodents, manifested by decreased sucrose preference and increased time of immobility in a forced swim test. Ultrasound stress also increased the levels of oxidative stress markers. This is important, as stress has an established association with increased oxidative processes in the central nervous system. Total glutathione and carbonyl protein content were selected as relevant brain markers, as glutathione plays a critical role in cellular defensive mechanisms during oxidative stress and the level of protein carbonyls can be a measure of global protein oxidation. We demonstrated that two weeks of chronic exposure to ultrasound was enough to cause depressive-like behavioral changes in rats. Increased levels of oxidative stress markers in the hippocampus and prefrontal cortex were also observed after two weeks of such stress. The current study has two goals: the first is to study the relationship of depression and oxidative stress; the second is an additional validation of our approach to modeling stress­induced depressive-like states in rats. The present data further support the validity of the ultrasound model by expanding information related to the influence of ultrasound stress on behavioral and physiological parameters, which are of great importance in the development of stress-induced depression. A time correlation between the onset of symptoms and a change in the level of oxidative stress markers in the brain is also demonstrated.


Asunto(s)
Conducta Animal/fisiología , Depresión/fisiopatología , Estrés Oxidativo/fisiología , Estrés Psicológico/fisiopatología , Animales , Depresión/metabolismo , Trastorno Depresivo/fisiopatología , Modelos Animales de Enfermedad , Glutatión/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatología , Masculino , Corteza Prefrontal/fisiopatología , Ratas
15.
Front Behav Neurosci ; 13: 146, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31312126

RESUMEN

Willner's "chronic mild stress" (CMS) model is a globally recognized and most commonly used depression model. A depression model induced by ultrasonic exposure of variable frequencies has been created in our laboratory. This article compares two models of the depressive-like state according to three validity criteria. Face validity has been demonstrated in sucrose preference test, Porsolt test, social interest, open field and the Morris water maze. Rats after ultrasound impact have more pronounced anhedonia and social isolation. The construct validity has been proven due to increased levels of corticosterone, epinephrine and norepinephrine and reduced levels of dopamine and some of its metabolites in rat plasma after ultrasound exposure. Predictive validity has been described previously, where the therapeutic effects of various classes of antidepressants have been shown. Our study has demonstrated that the ultrasound-induced depression model is suitable, such as the generally accepted CMS protocol, and meets all required validity criteria. The model presented in this article might help to study pathogenetic mechanisms of depressive disorders, as well as to test promising methods of depression treatment.

16.
Neuropeptides ; 65: 100-105, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28688524

RESUMEN

Subclinical hypothyroidism is caused by thyroid hormone deficit and can lead to impairments in mood and cognition. In brain, supply with thyroxine (T4) is mediated by thyroid hormone transporters including the brain-specific anion transporter-1 (BSAT-1). In humans and rodents, BSAT-1 is expressed in brain microvessels and astrocytes. In this study, we tested whether exposure in utero with BSAT-1-specific monoclonal antibodies (MabBSAT) will affect the cognitive function of the progeny. On gestation day 16th, females were intravenously treated with MabBSAT, non-specific antibodies (control 1), and saline (control 2). 72h after injection, MabBSAT were still detectable in the rat brain while non-specific antibodies were found. Immunocytochemistry showed that MabBSAT can bind to cultured primary cerebrovascular rat cells. At the age of 1month, the progeny was subjected to the Y-maze test, novel object recognition test, passive avoidance test, and Morris water maze, which revealed significant impairments in the cognitive function in the MabBSAT-exposed progeny compared to both control progeny groups. Therefore, prenatal exposure to MabBSAT blocks brain BSAT-1 and limits T4 influx to the brain. This impairs the cognitive function in exposed progeny in the post-natal life.


Asunto(s)
Encéfalo/metabolismo , Cognición , Proteínas de Transporte de Catión Orgánico/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/psicología , Animales , Anticuerpos Monoclonales/administración & dosificación , Barrera Hematoencefálica/metabolismo , Encéfalo/inmunología , Femenino , Hipotiroidismo/metabolismo , Masculino , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Proteínas de Transporte de Catión Orgánico/inmunología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas Endogámicas , Tiroxina/metabolismo , Triyodotironina/metabolismo
17.
Neuropsychobiology ; 76(2): 89-99, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29860255

RESUMEN

BACKGROUND: Previous studies have shown the development of emotional and motivational disorders, such as anxiety-depression-like disorders with increased aggression in adolescent and adult Wistar rats, occurs after neonatal exposure to the dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5) inhibitors diprotin A and sitagliptin (postnatal days 5-18). METHODS: In this study, using real-time PCR, we evaluated changes in the gene expression of serine protease DPP-IV and prolyl endopeptidase (PREP, EC 3.4.21.26; dpp4 and prep genes), monoamine oxidase А (maoA) and B (maoB), and serotonin transporter (SERT; sert) in the brain structures from 3-month-old rats after postnatal action of DPP-IV inhibitors diprotin A and sitagliptin. RESULTS: Dpp4, sert, and maoB gene expression increased and maoA gene expression changed with a tendency to increase in the striatum of rats with neonatal sitagliptin action. The increase of maoA gene expression was also shown in the amygdala. An increase in prep gene expression was found in the striatum of rats with the neonatal action of diprotin A, and a decrease in maoB gene expression was observed in the amygdala. We detected a significant downward trend in sert gene expression in the frontal cortex and amygdala, as well as a tendency to increase in maoA gene expression in the hypothalamus. DISCUSSION: These findings suggest that changes in the expression of the abovementioned genes are associated with the development of anxiety and depression, with increased aggression caused by the neonatal action of diprotin A and sitagliptin.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Oligopéptidos/farmacología , Fosfato de Sitagliptina/farmacología , Transcriptoma , Agresión/fisiología , Animales , Animales Recién Nacidos , Ansiedad/metabolismo , Depresión/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Masculino , Monoaminooxidasa/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Ratas Wistar , Transcriptoma/efectos de los fármacos , Transcriptoma/fisiología
18.
Artículo en Inglés | MEDLINE | ID: mdl-27036099

RESUMEN

Emotional stress is primarily triggered by the cognitive processing of negative input; it is regarded as a serious pathogenetic factor of depression that is challenging to model in animals. While available stress paradigms achieve considerable face and construct validity in modelling depressive disorders, broader use of naturalistic stressors instead of the more prevalent models with artificial challenges inducing physical discomfort or pain may substantially contribute to the development of novel antidepressants. Here, we investigated whether a 3-week exposure of Wistar rats and Balb/c mice to unpredictably alternating frequencies of ultrasound between the ranges of 20-25 and 25-45kHz, which are known to correspond with an emotionally negative and with a neutral emotional state, respectively, for small rodents in nature, can induce behavioural and molecular depressive-like changes. Both rats and mice displayed decreased sucrose preference, elevated "despair" behaviour in a swim test, reduced locomotion and social exploration. Rats showed an increased expression of SERT and 5-HT2A receptor, a decreased expression of 5-HT1A receptor in the prefrontal cortex and hippocampus, diminished BDNF on gene and protein levels in the hippocampus. Fluoxetine, administered to rats at the dose of 10mg/kg, largely precluded behavioural depressive-like changes. Thus, the here applied paradigm of emotional stress is generating an experimental depressive state in rodents, which is not related to any physical stressors or pain. In essence, this ultrasound stress model, besides enhancing animal welfare, is likely to provide improved validity in the modelling of clinical depression and may help advance translational research and drug discovery for this disorder.


Asunto(s)
Conducta Animal/efectos de los fármacos , Trastorno Depresivo , Fluoxetina/farmacología , Receptores de Serotonina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Estrés Psicológico , Ondas Ultrasónicas/efectos adversos , Animales , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/etiología , Trastorno Depresivo/metabolismo , Modelos Animales de Enfermedad , Fluoxetina/administración & dosificación , Masculino , Ratones , Ratones Endogámicos BALB C , Ratas , Ratas Wistar , Receptores de Serotonina/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/etiología , Estrés Psicológico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...