Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38338451

RESUMEN

By taking advantage of a sequence of oxidative addition/reductive elimination reactions, Pt(II) cyclometalated derivatives are able to promote a rare C(sp2)-C(sp3) bond coupling, resulting in the production of novel methyl-substituted pyridines and bipyridines. Starting from 6-phenyl-2,2'-bipyridine, the step-by-step full sequence of reactions has been followed, leading to the unprecedented 3-methyl-6-phenyl-2,2'-bipyridine, which was isolated and fully characterized. The synthesis involves the following steps: (1) rollover cyclometalation to give the starting complex [Pt(N^C)(DMSO)Me]; (2) the synthesis of a more electron-rich complex [Pt(N^C)(PPh3)Me] by the substitution of DMSO with triphenylphosphine; (3) oxidative addition with methyl iodide to give the Pt(IV) complex [Pt(N^C)(PPh3)(Me)2(I)]; (4) iodide abstraction with silver tetrafluoborate to give an unstable pentacoordinate intermediate, which rapidly evolves through a carbon-carbon reductive coupling, forming a new C(sp3)-C(sp2) bond; (5) finally, the extrusion and characterization of the newly formed 3-methyl-6-phenyl-2,2'-bipyridine. The reaction has been therefore extended to a well-known classical cyclometalating ligand, 2-phenylpyridine, demonstrating that the method is not restricted to rollover derivatives. Following the same step-by-step procedure, 2-phenylpyridine was converted to 2-o-tolyl-pyridine, displaying the potential application of the method to the larger family of classical cyclometalated complexes. The application of this protocol may be useful to convert an array of heterocyclic compounds to their methyl- or alkyl-substituted analogs.

2.
Molecules ; 27(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36364075

RESUMEN

Rollover cyclometalated complexes constitute a family of derivatives which differ from classical cyclometalated species in certain aspects. Various potential application fields have been developed for both classes of compounds, which have both similarities and differences. In order to uncover the relationships and distinctions between these two families of compounds, four Pt(II) cyclometalated complexes derived from 2-phenylpyridine (ppy) and 2,2'-bipyridine (bpy), assumed as prototypical ligands, were compared. For this study, an electron rich isostructural and isoelectronic pair of compounds, [Pt(N^C)Me(PPh3)], and an electron-poorer compound, [Pt(N^C)Cl(PPh3)] were chosen (N^C = ppy or bpy). DFT calculations, cyclic voltammetry, and UV-Vis spectra also helped to shed light into these species. Due to the presence of the more electronegative nitrogen in place of a C-H group, the rollover bpy-H ligand becomes a slightly weaker donor than the classical ppy-H ligand, and hence, generates (slightly) more stable cyclometalated complexes, lower energy frontier molecular orbitals, and electron-poorer platinum centers. On the whole, it was revealed that classical and rollover complexes have overall structural similarity, which contrasts to their somewhat different chemical behavior.


Asunto(s)
Electrones , Platino (Metal) , Ligandos , Cristalografía por Rayos X , Platino (Metal)/química , Nitrógeno
3.
RSC Adv ; 12(39): 25342-25353, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199318

RESUMEN

The main goal of the presented study was to design a biosensor-based system for epinephrine (EP) detection using a poly-thiophene derivative and tyrosinase as a biorecognition element. We compared two different electroanalytical techniques to select the most prominent technique for analyzing the neurotransmitter. The prepared biosensor system exhibited good parameters; the differential pulse (DPV) technique presented a wide linear range (1-20 µM and 30-200 µM), with a low detection limit (0.18 nM and 1.03 nM). In the case of chronoamperometry (CA), a high signal-to-noise ratio and lower reproducibility were observed, causing a less broad linear range (10-200 µM) and a higher detection limit (125 nM). Therefore, the DPV technique was used for the calculation of sensitivity (0.0011 µA mM-1 cm-2), stability (49 days), and total surface coverage (4.18 × 10-12 mol cm-2). The biosensor also showed very high selectivity in the presence of common interfering species (i.e. ascorbic acid, uric acid, norepinephrine, dopamine) and was successfully applied for EP determination in a pharmaceutical sample.

4.
Dalton Trans ; 50(14): 4859-4873, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33877183

RESUMEN

Several palladium(ii) and platinum(ii) complexes (1-20) of general formula [M(Ln)(X)(Y)] [M = Pd, X = Y = Cl (1-Cl-4-Cl), X = Y = OAc (1-OAc-4-OAc); M = Pt: X = Y = Cl (5-8); M = Pd, X = Cl, Y = CH3 (9-12); M = Pt, X = Cl, Y = CH3 (13-16) or X = Y = CH3 (17-20); n = 1-4] have been synthesized by reaction of different Pd(ii) and Pt(ii) derivatives with various 3-substituted 1-(2-pyridyl)-imidazo[1,5-a]pyridines; i.e.Ln = 1-(2-pyridyl)-3-arylimidazo[1,5-a]pyridine (aryl = Phenyl, L1; 2-o-Tolyl, L2; Mesityl, L3) and 1-(2-pyridyl)-3-benzylimidazo[1,5-a]pyridine (L4). Detailed spectroscopic investigation (including IR, mono- and bi-dimensional 1H NMR) and elemental analysis has been performed for all these species, allowing their complete characterization. Ln act as N,N-bidentate ligands and coordinate the metal centers in a chelate fashion through the pyridyl (Npy) and the pyridine-like nitrogen atom of the imidazo[1,5-a]pyridine group (Nim). The X-ray structural analysis performed on two of Pd(ii) and three Pt(ii) complexes, namely [Pd(L2)(CH3)Cl] (10), [Pd(L3)(CH3)Cl] (11) and [Pt(L1)Cl2] (5), [Pt(L4)Cl2] (8), [Pt(L2)(CH3)Cl] (14) confirmed the spectroscopic and analytical data. Finally DFT studies unveiled the structural reasons behind the inertia of the synthesised compounds toward metalation, identified as the higher angle steric strain in comparison with the analogous bipyridine complexes.

5.
Molecules ; 26(2)2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33435257

RESUMEN

Rollover cyclometalation constitutes a particular case of cyclometallation reaction. This reaction occurs when a chelated heterocyclic ligand loses its bidentate coordination mode and undergoes an internal rotation, after which a remote C-H bond is regioselectively activated, affording an uncommon cyclometalated complex, called "rollover cyclometalated complex". The key of the process is the internal rotation of the ligand, which occurs before the C-H bond activation and releases from coordination a donor atom. The new "rollover" ligand has peculiar properties, being a ligand with multiple personalities, no more a spectator in the reactivity of the complex. The main reason of this peculiarity is the presence of an uncoordinated donor atom (the one initially involved in the chelation), able to promote a series of reactions not available for classic cyclometalated complexes. The rollover reaction is highly regioselective, because the activated C-H bond is usually in a symmetric position with respect to the donor atom which detaches from the metal stating the rollover process. Due to this novel behavior, a series of potential applications have appeared in the literature, in fields such as catalysis, organic synthesis, and advanced materials.


Asunto(s)
Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Estructura Molecular
6.
Molecules ; 24(17)2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443449

RESUMEN

Structure-related biological activities of flavanones are still considered largely unexplored. Since they exhibit various medicinal activities, it is intriguing to enter deeper into their chemical structures, electronic transitions or interactions with some biomolecules in order to find properties that allow us to better understand their effects. Little information is available on biological activity of flavanone and its monohydroxy derivatives in relation to their physicochemical properties as spectral profiles, existence of protonated/deprotonated species under pH changes or interaction with Calf Thymus DNA. We devoted this work to research demonstrating differences in the physicochemical properties of the four flavanones: flavanone, 2'-hydroxyflavanone, 6-hydroxyflavanone and 7-hydroxyflavanone and linking them to their biological activity. Potentiometric titration, UV-Vis spectroscopy were used to investigate influence of pH on acid-base and spectral profiles and to propose the mode of interaction with DNA. Cyclic voltammetry was applied to evaluate antioxidant potentiality and additionally, theoretical DFT(B3LYP) method to disclose electronic structure and properties of the compounds. Molecular geometries, proton affinities and pKa values have been determined. According to computational and cyclic voltammetry results we could predict higher antioxidant activity of 6-hydroxyflavanone with respect to other compounds. The values of Kb intrinsic binding constants of the flavanones indicated weak interactions with DNA. Structure-activity relationships observed for antioxidant activity and DNA interactions suggest that 6-hydroxyflavanone can protect DNA against oxidative damage most effectively than flavanone, 2'-hydroxyflavanone or 7-hydroxyflavanone.


Asunto(s)
ADN/química , Flavanonas/química , Algoritmos , Animales , Bovinos , Modelos Moleculares , Modelos Teóricos , Conformación Molecular , Estructura Molecular , Relación Estructura-Actividad
7.
Inorg Chem ; 57(23): 14852-14865, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30457328

RESUMEN

A series of novel (C∧N∧N) cyclometalated AuIII complexes of general formula [Au(bipydmb-H)X][PF6] (bipydmb-H = C∧N∧N cyclometalated 6-(1,1-dimethylbenzyl)-2,2'-bipyridine) were prepared with a range of anionic ligands X in the fourth coordination position, featuring C (alkynyl)-, N-, O-, or S-donor atoms. The X ligands are varied in nature and include three coumarins, 4-ethynylaniline, saccharine, and thio-ß-d-glucose tetraacetate, the tripeptide glutathione (GSH), and a coumarin-substituted amide derived from 4-ethynylaniline. The gold(I) complex [Au(C2ArNHCOQ)(PPh3)] (HC2ArNHCOQ = N-(4-ethynylphenyl)-2-oxo-2 H-chromene-3-carboxamide) was also prepared for comparison. The new compounds were fully characterized by means of analytical techniques, including NMR, absorption, and emission spectroscopy. The crystal structures of three cyclometalated AuIII complexes and of the AuI derivative were solved by single-crystal X-ray diffraction. The antiproliferative activity of the new AuIII cyclometalated derivatives was evaluated against cancer cells in vitro. According to the obtained results, only complexes 3-PF6 and 5-PF6, featuring coumarins as ancillary ligands and endowed with high redox stability in solution, display antiproliferative effects, with 5-PF6 being the most potent, while all of the others are scarcely active to nonactive in the selected cell lines. In order to study the reactivity of the compounds with biomolecules, the interaction of complexes 3-PF6 and 5-PF6 with the protein cytochrome c and the amino acids cysteine and histidine was analyzed by electrospray ionization mass spectrometry (ESI MS), showing adduct formation only with Cys after at least 1 h incubation. Furthermore, the parent hydroxo complex [Au(bipydmb-H)(OH)][PF6] (1OH-PF6) was investigated in a competitive assay to determine the protein vs oligonucleotide binding preferences by capillary zone electrophoresis (CZE) coupled to ESI-MS. Of note, the compound was found to selectively form adducts with the oligonucleotide over the protein upon ligand exchange with the hydroxido ligand. Adduct formation occurred within the first 10 min of incubation, demonstrating the preference of 1OH-PF6 for nucleotides in this setup. Overall, the obtained results point toward the possibility to selectively target DNA with gold(III) organometallics.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Carbono/farmacología , Complejos de Coordinación/farmacología , Oro/farmacología , Nitrógeno/farmacología , Antineoplásicos/química , Carbono/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Oro/química , Células HEK293 , Humanos , Modelos Moleculares , Estructura Molecular , Nitrógeno/química
8.
J Inorg Biochem ; 180: 101-118, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29247867

RESUMEN

Fisetin (3,3',4',7-tetrahydroxyflavone) metal chelates are of interest as this plant polyphenol has revealed broad prospects for its use as natural medicine in the treatment of various diseases. Metal interactions may change or enhance fisetin biological properties so understanding fisetin metal chelation is important for its application not only in medicine but also as a food additive in nutritional supplements. This work was aimed to determine and characterize copper complexes formed in different pH range at applying various metal/ligand ratios. Fisetin and Cu(II)-fisetin complexes were characterized by potentiometric titrations, UV-Vis (Ultraviolet-visible spectroscopy), EPR, ESI-MS, FTIR and cyclic voltammetry. Their effects on DNA were investigated by using circular dichroism, spectrofluorimetry and gel electrophoresis methods. The copper complex with the ratio of Cu(II)/fisetin 1/2 exhibited significant DNA cleavage activity, followed by complete degradation of DNA. The influence of copper(II) ions on antioxidant activity of fisetin in vitro has been studied using DPPH, ABTS and mitochondrial assays. The results have pointed out that fisetin or copper complexes can behave both as antioxidants or pro-oxidants. Antimicrobial activity of the compounds has been investigated towards several bacteria and fungi. The copper complex of Cu(II)/fisetin 1/2 ratio showed higher antagonistic activity against bacteria comparing to the ligand and it revealed a promising antifungal activity.


Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/química , Quelantes/química , Cobre/química , ADN/química , Flavonoides/química , Antiinfecciosos/química , Antioxidantes/farmacología , Quelantes/farmacología , Cobre/farmacología , Electroforesis en Gel de Poliacrilamida , Flavonoides/farmacología , Flavonoles , Concentración de Iones de Hidrógeno , Análisis Espectral/métodos
9.
J Inorg Biochem ; 170: 188-194, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28260677

RESUMEN

The novel heteroleptic cyclometalated complex [AuIII(pyb-H)(mnt)] (1; pyb-H=C-deprotonated 2-benzylpyridine; mnt =1,2-dicyanoethene-1,2-dithiolate) was tested against a panel of ten Gram positive (belonging to the Staphylococcus, Streptococcus spp. and Bacillus clausii), Gram negative (E. coli, K. pneumoniae, P. aeruginosa) bacteria and three yeasts belonging to the Candida spp. Complex 1 showed a remarkable bacteriostatic antimicrobial activity against staphylococci, with Minimum Inhibitory Concentration (MIC) values of 1.56 and 3.13µg/mL for S. haemoliticus and S. aureus, respectively. Spectroscopic and electrochemical measurements, supported by Density Functional Theory (DFT) calculations, were exploited to fully investigate the electronic structure of complex 1 and its relationship with the antimicrobial activity.


Asunto(s)
Antiinfecciosos , Bacterias/crecimiento & desarrollo , Candida/crecimiento & desarrollo , Compuestos Orgánicos de Oro , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Compuestos Orgánicos de Oro/síntesis química , Compuestos Orgánicos de Oro/química , Compuestos Orgánicos de Oro/farmacología
10.
Dalton Trans ; 45(2): 579-90, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26609781

RESUMEN

A novel platinum(ii) organometallic complex, [Pt(pbi)(Me)(DMSO)], bearing the 2-(2'-pyridyl)-benzimidazole (pbiH) ligand, was synthesized and fully characterized. Interestingly, the reaction of this organometallic platinum(ii) complex with two distinct gold(i) phosphane compounds afforded the corresponding heterobimetallic derivatives with the pbi ligand bridging the two metal centers. The antiproliferative properties in vitro of [Pt(pbi)(Me)(DMSO)] and its gold(i) derivatives as well as those of the known coordination platinum(ii) and palladium(ii) complexes with the same ligand, of the general formula [MCl2(pbiH)], were comparatively evaluated against A2780 cancer cells, either sensitive or resistant to cisplatin. A superior biological activity of the organometallic compound clearly emerged compared to the corresponding platinum(ii) complex; the antiproliferative effects are further enhanced upon attaching the gold(i) triphenylphosphine moiety to the organometallic Pt compound. Remarkably, these novel metal species are able to overcome nearly complete resistance to cisplatin. Significant mechanistic insight into the study compounds was gained after investigating their reactions with a few representative biomolecules by electrospray mass spectrometry and X-ray crystallography. The obtained results are comprehensively discussed.


Asunto(s)
Complejos de Coordinación/química , Oro/química , Platino (Metal)/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Sitios de Unión , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , Cristalografía por Rayos X , Proteína Catiónica del Eosinófilo/química , Proteína Catiónica del Eosinófilo/metabolismo , Humanos , Concentración 50 Inhibidora , Simulación de Dinámica Molecular , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA