Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 92(12): 124503, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34972443

RESUMEN

We describe an experiment container with light scattering and imaging diagnostics for experiments on soft matter aboard the International Space Station (ISS). The suite of measurement capabilities can be used to study different materials in exchangeable sample cell units. The currently available sample cell units and future possibilities for foams, granular media, and emulsions are presented in addition to an overview of the design and the diagnostics of the experiment container. First results from measurements performed on ground and during the commissioning aboard the ISS highlight the capabilities of the experiment container to study the different materials.

2.
Soft Matter ; 14(34): 7016-7025, 2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30112557

RESUMEN

The rheological properties of a medium can be inferred from the Brownian motion of colloidal tracer particles using the microrheology procedure. The tracer motion can be characterized by the mean-squared displacement (MSD). It can be calculated from the intermediate scattering function determined by Differential Dynamic Microscopy (DDM). Here we show that DDM together with the empirical Cox-Merz rule is particularly suited to measure the steady-shear viscosity, i.e. the viscosity towards zero frequency, due to its ability to provide reliable information on long time and length scales and hence small frequencies. This method, η-DDM, is tested and illustrated using three different systems: Newtonian fluids (glycerol-water mixtures), colloidal suspensions (protein samples) and a viscoelastic polymer solution (aqueous poly(ethylene oxide) solution). These tests show that common lab equipment, namely a bright-field optical microscope, can be used as a convenient and reliable microliter viscometer. Because η-DDM requires much smaller sample volumes than classical rheometry, only a few microliters, it is particularly useful for biological and soft matter systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...