Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLOS Water ; 2(10): 1-30, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-38516272

RESUMEN

M. aeruginosa fluorescent changes were observed using a Cytek Aurora spectral flow cytometer that contains 5 lasers and 64 narrow band detectors located between 365 and 829 nm. Cyanobacteria were treated with different concentrations of H2O2 and then monitored after exposure between 1 and 8 days. The red fluorescence emission derived from the excitation of cyanobacteria with a yellow green laser (550 nm) was measured in the 652-669 nm detector while green fluorescence from excitation with a violet laser (405 nm) was measured in the 532-550 nm detector. The changes in these parameters were measured after the addition of H2O2. There was an initial increase in red fluorescence intensity at 24 hours. This was followed by a daily decrease in red fluorescence intensity. In contrast, green fluorescence increased at 24 hours and remained higher than the control for the duration of the 8-day study. A similar fluorescence intensity effect as H2O2 on M. aeruginosa fluorescence emissions was observed after exposure to acetylacetone, diuron (DCMU), peracetic acid, and tryptoline. Minimal growth was also observed in H2O2 treated cyanobacteria during exposure of H2O2 for 24 days. In another experiment, H2O2-treated cyanobacteria were exposed to high-intensity blue (14 mW) and UV (1 mW) lights to assess the effects of light stress on fluorescence emissions. The combination of blue and UV light with H2O2 had a synergistic effect on M. aeruginosa that induced greater fluorescent differences between control and treated samples than exposure to either stimulus individually. These experiments suggest that the early increase in red and green fluorescence may be due to an inhibition in the ability of photosynthesis to process photons. Further research into the mechanisms driving these increases in fluorescence is necessary.

2.
Environ Sci Technol ; 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34346225

RESUMEN

Silver nanoparticles (AgNPs) are well-proven antimicrobial nanomaterials, yet little is elucidated regarding the mechanism underlying cytotoxicity induced by these nanoparticles. Here, we tested the hypothesis that mitochondria are primary intracellular targets of two AgNPs and silver ions in mouse hepatocytes (AML12) cultured in glucose- and galactose-based media. AML12 cells were more sensitive to mitochondrial uncoupling when grown with galactose rather than glucose. However, 24 h treatments with 15 nm AgNPs and 6 nm GA-AgNPs (5 and 10 µg/mL) and AgNO3 (1 and 3 µg/mL), concentrations that resulted in either 10 or 30% cytotoxicity, failed to cause more toxicity to AML12 cells grown on galactose than glucose. Furthermore, colocalization analysis and subcellular Ag quantification did not show any enrichment of silver content in mitochondria in either medium. Finally, the effects of the same exposures on mitochondrial respiration were mild or undetectable, a result inconsistent with mitochondrial toxicity causing cell death. Our results suggest that neither ionic Ag nor the AgNPs that we tested specifically target mitochondria and are inconsistent with mitochondrial dysfunction being the primary cause of cell death after Ag exposure under these conditions.

3.
PLoS One ; 15(12): e0240268, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33259485

RESUMEN

During studies on the absorption and interactions between silver nanoparticles and mammalian cells grown in vitro it was observed that large extracellular rings of silver nanoparticles were deposited on the microscope slide, many located near post-mitotic cells. Silver nanoparticles (AgNP, 80nm), coated with citrate, were incubated at concentrations of 0.3 to 30 µg/ml with a human-derived culture of retinal pigment epithelial cells (ARPE-19) and observed using darkfield and fluorescent microscopy, 24 h after treatment. Approximately cell-sized extracellular rings of deposited AgNP were observed on the slides among a field of dispersed individual AgNP. The mean diameter of 45 nanoparticles circles was 62.5 +/-12 microns. Ring structures were frequently observed near what appeared to be post-mitotic daughter cells, giving rise to the possibility that cell membrane fragments were deposited on the slide during mitosis, and those fragments selectively attracted and retained silver nanoparticles from suspension in the cell culture medium. These circular structures were observable for the following technical reasons: 1) darkfield microscope could observe single nanoparticles below 100 nm in size, 2) a large concentration (108 and 109) of nanoparticles was used in these experiments 3) negatively charged nanoparticles were attracted to adhesion membrane proteins remaining on the slide from mitosis. The observation of silver nanoparticles attracted to apparent remnants of cellular mitosis could be a useful tool for the study of normal and abnormal mitosis.


Asunto(s)
Nanopartículas del Metal/análisis , Mitosis , Plata/análisis , Línea Celular , Humanos , Microscopía Fluorescente/métodos , Orgánulos/química
4.
PLoS One ; 14(7): e0219078, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31365549

RESUMEN

This study compared the relative cellular uptake of 80 nm silver nanoparticles (AgNP) with four different coatings including: branched polyethyleneimine (bPEI), citrate (CIT), polyvinylpyrrolidone (PVP), and polyethylene glycol (PEG). A gold nanoparticle PVP was also compared to the silver nanoparticles. Biophysical parameters of cellular uptake and effects included flow cytometry side scatter (SSC) intensity, nuclear light scatter, cell cycle distributions, surface plasmonic resonance (SPR), fluorescence microscopy of mitochondrial gross structure, and darkfield hyperspectral imaging. The AgNP-bPEI were positively charged and entered cells at a higher rate than the negatively or neutrally charged particles. The AgNP-bPEI were toxic to the cells at lower doses than the other coatings which resulted in mitochondria being transformed from a normal string-like appearance to small round beaded structures. Hyperspectral imaging showed that AgNP-bPEI and AgNP-CIT agglomerated in the cells and on the slides, which was evident by longer spectral wavelengths of scattered light compared to AgNP-PEG and AgNP-PVP particles. In unfixed cells, AgNP-CIT and AgNP-bPEI had higher SPR than either AgNP-PEG or AgNP-PVP particles, presumably due to greater intracellular agglomeration. After 24 hr. incubation with AgNP-bPEI, there was a dose-dependent decrease in the G1 phase and an increase in the G2/M and S phases of the cell cycle suggestive of cell cycle inhibition. The nuclei of all the AgNP treated cells showed a dose-dependent increase in nanoparticles following non-ionic detergent treatment in which the nuclei retained extra-nuclear AgNP, suggesting that nanoparticles were attached to the nuclei or cytoplasm and not removed by detergent lysis. In summary, positively charged AgNP-bPEI increased particle cellular uptake. Particles agglomerated in the peri-nuclear region, increased mitochondrial toxicity, disturbed the cell cycle, and caused abnormal adherence of extranuclear material to the nucleus after detergent lysis of cells. These results illustrate the importance of nanoparticle surface coatings and charge in determining potentially toxic cellular interactions.


Asunto(s)
Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Plata/química , Transporte Biológico Activo , Fenómenos Biofísicos , Ciclo Celular , Línea Celular , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacocinética , Citometría de Flujo , Oro , Humanos , Microscopía , Polietilenglicoles/química , Polietileneimina/química , Povidona/química , Espectrofotometría , Resonancia por Plasmón de Superficie
5.
Methods Mol Biol ; 1965: 297-311, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31069683

RESUMEN

BACKGROUND: After fluorochromes are incorporated into cells, tissues, and organisms, confocal microscopy can be used to observe three-dimensional structures. LysoTracker Red (LT) is a paraformaldehyde-fixable probe that concentrates into acidic compartments of cells and indicates regions of high lysosomal activity and phagocytosis, both of which correlate to apoptotic activity. Thus, LT is a good indicator of apoptosis visualized by confocal microscopy. Results of LT staining of apoptotic cell death correlate well with other whole mount apoptosis vital dyes such as Nile blue sulfate and neutral red, with the added benefit of being fixable in situ. Nile blue sulfate can also be used as a non-vital, nonspecific dye to visualize general morphology. Stains such as acridine orange can be used for surface staining of fixed embryos to yield confocal images that are similar to scanning electron micrographs. METHODS: Mouse embryos were stained with LT, fixed with paraformaldehyde/glutaraldehyde, dehydrated with methanol (MEOH), and cleared with benzyl alcohol/benzyl benzoate (BABB). Following this treatment, the tissues were nearly transparent. Embryos are mounted on depression slides, and serial sections are imaged by confocal microscopy, followed by 3-D reconstruction. RESULTS: Embryos or tissues as thick as 500 microns (µm) can be visualized after clearing with BABB. LysoTracker staining reveals apoptotic regions in organogenesis-stage mouse embryos. Morphological observation of tissue was facilitated by combining autofluorescence with Nile blue sulfate staining of fixed embryos or opaque surface staining with acridine orange staining. CONCLUSIONS: The use of BABB for clearing LT vital-stained and fixed embryos matches the refractive index of the tissue to the suspending medium, allowing increased penetration of laser light in a confocal microscope. Nile blue sulfate used as a non-vital dye provides a nonspecific staining of fixed embryos that can then be cleared with methyl salicylate for confocal observation. Sample preparation and staining procedures described here, with optimization of confocal laser scanning microscopy, allow for the detection and visualization of morphological structure and apoptosis in embryos up to 500 µm thick, and stained specimens can be fixed and mounted on depression slides.


Asunto(s)
Embrión de Mamíferos/ultraestructura , Lisosomas/metabolismo , Organogénesis , Aminas/metabolismo , Animales , Apoptosis , Embrión de Mamíferos/metabolismo , Imagenología Tridimensional , Ratones , Microscopía Confocal , Fagocitosis
6.
NanoImpact ; 14: 100156, 2019 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-34316524

RESUMEN

An important issue for interpreting in vitro nanomaterial testing is quantifying the dose delivered to target cells. Considerations include the concentration added to the culture, the proportion of the applied dose that interacts with the target cells, and the amount that is eventually absorbed by the target cells. Rapid and efficient techniques are needed to determine delivered doses. Previously, we demonstrated that TiO2 and silver nanoparticles (AgNP) were absorbed by cells in a dose dependent manner between 1 µg/ml and 30 µg/ml and were detected in cells by light scatter using a flow cytometer. Here, we compare four potential indices of the dose of AgNP to cells, including: inductively coupled plasma - mass spectrometry (ICP-MS); flow cytometry side scatter (SSC); and amount of silver deposited to the cell layer as estimated with both an integrated Volumetric Centrifugation Method - In Vitro Sedimentation, Diffusion and Dosimetry Model (VCM-ISDD) and a Distorted Grid (DG) model. A retinal pigment epithelial cell line was exposed to 20 nm or 75 nm citrate-coated AgNP for 24 hr. The relationships between particle sizes and internalized doses varied according to the dose metric. Twenty-four hours after exposure, the cell layer contained a greater mass of silver when treated with 75 nm AgNP than with 20 nm AgNP. When the dose was expressed as the number of particles or as the total surface area of absorbed particles, however, the reverse was true; the dose to the cells was higher after exposure to 20 than 75 nm AgNP. Flow cytometry SSC increased with dose for both sizes of AgNP, and was correlated with Ag in cells measured by ICP-MS. The rate of SSC increase was greater for 75 than for 20 nm AgNP, suggesting it could be used as an indicator of cellular dose after accounting for particle size and composition. Silver was detected by ICP-MS in re-suspended supernates of the isolated cell layer suggested that not all the silver deposited to the cell layer was absorbed by the cells. Both the VCM-ISDD and DG models estimated the proportion of Ag deposited to the cellular layer, which in both cases was greater than the amount of silver in the cells measured by ICP-MS. Modeled deposition more closely compared to the total Ag deposition by ICP-MS, i.e. mass of silver in the cells plus the resuspended, unabsorbed Ag from the cell layer. ICP-MS indicated the mass of silver in cells from AgNP treatment, but not whether the Ag was in the form of particles or dissolved ions. Deposition models predicted the amount of AgNP deposited to the cell layer, but not cellular uptake. Flow cytometry SSC was correlated to cellular uptake of particle-form AgNP and could be calibrated against ICP-MS to indicate mass of cellular uptake. Therefore, a combination of approaches may be required to accurately understand cellular dosimetry of in vitro nanotoxicology experiments. In summary, cellular dosimetry is an important consideration for nanotoxicology experiments, and not necessarily related to the applied dose.

7.
Crit Rev Toxicol ; 47(9): 767-810, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28661217

RESUMEN

Engineered nanomaterials (ENM) are a growing aspect of the global economy, and their safe and sustainable development, use, and eventual disposal requires the capability to forecast and avoid potential problems. This review provides a framework to evaluate the health and safety implications of ENM releases into the environment, including purposeful releases such as for antimicrobial sprays or nano-enabled pesticides, and inadvertent releases as a consequence of other intended applications. Considerations encompass product life cycles, environmental media, exposed populations, and possible adverse outcomes. This framework is presented as a series of compartmental flow diagrams that serve as a basis to help derive future quantitative predictive models, guide research, and support development of tools for making risk-based decisions. After use, ENM are not expected to remain in their original form due to reactivity and/or propensity for hetero-agglomeration in environmental media. Therefore, emphasis is placed on characterizing ENM as they occur in environmental or biological matrices. In addition, predicting the activity of ENM in the environment is difficult due to the multiple dynamic interactions between the physical/chemical aspects of ENM and similarly complex environmental conditions. Others have proposed the use of simple predictive functional assays as an intermediate step to address the challenge of using physical/chemical properties to predict environmental fate and behavior of ENM. The nodes and interactions of the framework presented here reflect phase transitions that could be targets for development of such assays to estimate kinetic reaction rates and simplify model predictions. Application, refinement, and demonstration of this framework, along with an associated knowledgebase that includes targeted functional assay data, will allow better de novo predictions of potential exposures and adverse outcomes.


Asunto(s)
Ecotoxicología/métodos , Salud Ambiental , Contaminantes Ambientales/toxicidad , Nanoestructuras/toxicidad , Humanos , Modelos Teóricos , Medición de Riesgo , Seguridad
8.
Cytometry A ; 89(2): 169-83, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26619039

RESUMEN

There is a need to accurately detect, characterize, and quantify nanoparticles in suspensions. This study helps to understand the complex interactions between similar types of nanoparticles. Before initiating a study of metal nanoparticles, five submicron PS beads with sizes between 200 nm and 1 µm were used to derive a reference scale that was useful in evaluating the flow cytometer for functionality, sensitivity, resolution, and reproducibility. Side scatter intensity (SSC) from metal nanoparticles was obtained simultaneously from 405 nm and 488 nm lasers. The 405 nm laser generally yielded histogram distributions with smaller CVs, less side scatter intensity, better separation indices between beads and decreased scatter differences between different sized particles compared with the 488 nm laser. Submicron particles must be diluted to 10(6) and 10(7) particles/mL before flow cytometer analysis to avoid coincidence counting artifacts. When particles were too concentrated the following occurred: swarm, electronic overload, coincidence counting, activation of doublet discrimination and rejection circuitry, increase of mean SSC histogram distributions, alterations of SSC and pulse width histogram shape, decrease and fluctuations in counting rate and decrease or elimination of particulate water noise and 1 µm reference bead. To insure that the concentrations were in the proper counting range, the nanoparticle samples were mixed with a known concentration of 1 µm counting beads. Sequential dilutions of metal nanoparticles in a 1 µm counting bead suspension helped determine the diluted concentration needed for flow cytometer analysis. It was found that the original concentrated nanoparticle samples had to be diluted, between 1:10,000 and 1:100,000, before characterization by flow cytometry. The concentration of silver or gold nanoparticles in the undiluted sample were determined by comparing them with a known concentration (1.9 × 10(6) beads/mL) of 1 µm polystyrene reference beads.


Asunto(s)
Citometría de Flujo/métodos , Oro/química , Nanopartículas del Metal/química , Plata/química , Citometría de Flujo/normas , Rayos Láser , Microesferas , Tamaño de la Partícula , Estándares de Referencia
9.
Environ Mol Mutagen ; 55(4): 336-42, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24446152

RESUMEN

We showed previously that exposure of human lung cells (BEAS-2B) to TiO2 nanoparticles (nano-TiO2 ) produced micronuclei (MN) only when the final concentration of protein in the cell-culture medium was at least 1%. Nanoparticles localize in the liver; thus, we exposed human liver cells (HepG2) to nano-TiO2 and found the same requirement for MN induction. Nano-TiO2 also formed small agglomerates in medium containing as little as 1% protein and caused cellular interaction as measured by side scatter by flow cytometry and DNA damage (comet assay) in HepG2 cells. Nano-TiO2 also increased the activity of the inflammatory factor NFkB but not of AP1 in a reporter-gene HepG2 cell line. Suspension of nano-TiO2 in medium containing 0.1% protein was sufficient for induction of MN by the nanoparticles in either BEAS-2B or HepG2 cells as long the final concentration of protein in the cell-culture medium was at least 1%.


Asunto(s)
Bronquios/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Medios de Cultivo/farmacología , Células Epiteliales/efectos de los fármacos , Nanopartículas del Metal/química , Titanio/farmacología , Materiales Biocompatibles/farmacología , Bronquios/citología , Bronquios/metabolismo , Técnicas de Cultivo de Célula , Supervivencia Celular , Células Cultivadas , Ensayo Cometa , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Hep G2 , Humanos , Luciferasas/metabolismo , Pruebas de Micronúcleos
10.
Methods Mol Biol ; 1075: 321-74, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24052361

RESUMEN

A confocal microscope was evaluated with a series of tests that measure field illumination, lens clarity, laser power, laser stability, dichroic functionality, spectral registration, axial resolution, scanning stability, PMT quality, overall machine stability, and system noise. These tests will help investigators measure various parameters on their confocal microscopes to insure that they are working correctly with the necessary resolution, sensitivity, and precision. Utilization of this proposed testing approach will help eliminate some of the subjectivity currently employed in assessing the CLSM performance.


Asunto(s)
Calibración/normas , Rayos Láser/normas , Microscopía Confocal/normas , Humanos , Iluminación/instrumentación , Iluminación/normas , Microscopía Confocal/instrumentación
11.
Toxicol Sci ; 137(2): 436-46, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24218149

RESUMEN

Adverse intrauterine environments have been associated with increased risk of later cardiovascular disease and hypertension. In an animal model using diverse developmental toxicants, we measured blood pressure (BP), renal nephron endowment, renal glucocorticoid receptor (GR) gene expression, and serum aldosterone in offspring of pregnant Sprague Dawley rats exposed to dexamethasone (Dex), perfluorooctane sulfonate (PFOS), atrazine, perfluorononanoic acid (PFNA), arsenic, or nicotine. BP was assessed by tail cuff photoplethysmography, nephron endowment by confocal microscopy, and renal GR mRNA by qPCR. BP was also measured by telemetry, and corticosterone (CORT) was measured in resting or restrained Dex and atrazine offspring. Treated dams gained less weight during treatment in all groups except arsenic. There were chemical- and sex-specific effects on birth weight, but offspring body weights were similar by weaning. BP was higher in Dex, PFOS, atrazine, and PFNA male offspring by 7-10 weeks. Female offspring exhibited elevated BP at 10 weeks for PFNA and arsenic, and at 37 weeks for Dex, PFOS, and atrazine. Dex, PFOS, and atrazine offspring still exhibited elevated BP at 52-65 weeks of age; others did not. Elevated BP was associated with lower nephron counts. Dex, PFOS, and atrazine offspring had elevated renal GR gene expression. Elevations in BP were also observed in Dex and atrazine offspring by radiotelemetry. Atrazine offspring exhibited enhanced CORT response to restraint. Elevated offspring BP was induced by maternal exposure to toxicants. Because all treatments affected maternal gestational weight gain, maternal stress may be a common underlying factor in these observations.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Xenobióticos/toxicidad , Aldosterona/sangre , Animales , Peso al Nacer/efectos de los fármacos , Femenino , Masculino , Microscopía Confocal , Nefronas/efectos de los fármacos , Nefronas/crecimiento & desarrollo , Nefronas/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Sprague-Dawley , Receptores de Glucocorticoides/biosíntesis , Estrés Psicológico/sangre , Xenobióticos/química
12.
ACS Nano ; 7(3): 1929-42, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23387956

RESUMEN

The widespread use of titanium dioxide (TiO2) nanoparticles in consumer products increases the probability of exposure to humans and the environment. Although TiO2 nanoparticles have been shown to induce DNA damage (comet assay) and chromosome damage (micronucleus assay, MN) in vitro, no study has systematically assessed the influence of medium composition on the physicochemical characteristics and genotoxicity of TiO2 nanoparticles. We assessed TiO2 nanoparticle agglomeration, cellular interaction, induction of genotoxicity, and influence on cell cycle in human lung epithelial cells using three different nanoparticle-treatment media: keratinocyte growth medium (KGM) plus 0.1% bovine serum albumin (KB); a synthetic broncheoalveolar lavage fluid containing PBS, 0.6% bovine serum albumin and 0.001% surfactant (DM); or KGM with 10% fetal bovine serum (KF). The comet assay showed that TiO2 nanoparticles induced similar amounts of DNA damage in all three media, independent of the amount of agglomeration, cellular interaction, or cell-cycle changes measured by flow cytometry. In contrast, TiO2 nanoparticles induced MN only in KF, which is the medium that facilitated the lowest amount of agglomeration, the greatest amount of nanoparticle cellular interaction, and the highest population of cells accumulating in S phase. These results with TiO2 nanoparticles in KF demonstrate an association between medium composition, particle uptake, and nanoparticle interaction with cells, leading to chromosomal damage as measured by the MN assay.


Asunto(s)
Aberraciones Cromosómicas , Daño del ADN , Nanopartículas del Metal/toxicidad , Mutágenos/toxicidad , Titanio/toxicidad , Animales , Bovinos , Ciclo Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa , Medios de Cultivo/química , Humanos , Nanopartículas del Metal/ultraestructura , Pruebas de Micronúcleos , Albúmina Sérica Bovina
13.
Curr Protoc Cytom ; Chapter 1: 1.28.1-1.28.11, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23292706

RESUMEN

When purchasing a flow cytometer, the decision of which brand, model, specifications, and accessories may be challenging. The decisions should initially be guided by the specific applications intended for the instrument. However, many other factors need to be considered, which include hardware, software, quality assurance, support, service, and price and recommendations from colleagues. These issues are discussed to help guide the purchasing process.


Asunto(s)
Estudios de Evaluación como Asunto , Citometría de Flujo/instrumentación , Departamento de Compras en Hospital , Artefactos , Computadores/normas , Diseño de Equipo , Citometría de Flujo/economía , Citometría de Flujo/normas , Humanos , Rayos Láser , Modelos Biológicos , Departamento de Compras en Hospital/normas , Control de Calidad , Sensibilidad y Especificidad , Programas Informáticos/normas
14.
Toxicol Appl Pharmacol ; 258(2): 226-36, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22115978

RESUMEN

Titanium dioxide nanoparticles (nano-TiO(2)) catalyze reactions under UV radiation and are hypothesized to cause phototoxicity. A human-derived line of retinal pigment epithelial cells (ARPE-19) was treated with six samples of nano-TiO(2) and exposed to UVA radiation. The TiO(2) nanoparticles were independently characterized to have mean primary particle sizes and crystal structures of 22nm anatase/rutile, 25nm anatase, 31nm anatase/rutile, 59nm anatase/rutile, 142nm anatase, and 214nm rutile. Particles were suspended in cell culture media, sonicated, and assessed for stability and aggregation by dynamic light scattering. Cells were treated with 0, 0.3, 1, 3, 10, 30, or 100µg/ml nano-TiO(2) in media for 24hrs and then exposed to UVA (2hrs, 7.53J/cm(2)) or kept in the dark. Viability was assessed 24hrs after the end of UVA exposure by microscopy with a live/dead assay (calcein-AM/propidium iodide). Exposure to higher concentrations of nano-TiO(2) with UVA lowered cell viability. The 25nm anatase and 31nm anatase/rutile were the most phototoxic (LC(50) with UVA<5µg/ml), while the 142nm anatase and 214nm rutile were the least phototoxic. An acellular assay ranked TiO(2) nanoparticles for their UVA photocatalytic reactivities. The particles were found to be capable of generating thiobarbituric acid reactive substances (TBARS) under UVA. Flow cytometry showed that nano-TiO(2) combined with UVA decreased cell viability and increased the generation of reactive oxygen species (ROS, measured by Mitosox). LC(50) values under UVA were correlated with TBARS reactivity, particle size, and surface area.


Asunto(s)
Nanopartículas del Metal/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Titanio/toxicidad , Rayos Ultravioleta/efectos adversos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Humanos , Concentración 50 Inhibidora , Dosificación Letal Mediana , Luz , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Tamaño de la Partícula , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/efectos de la radiación , Dispersión de Radiación , Titanio/administración & dosificación , Titanio/química
15.
Part Fibre Toxicol ; 8(1): 2, 2011 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-21247485

RESUMEN

BACKGROUND: Concerns over the health effects of nanomaterials in the environment have created a need for microscopy methods capable of examining the biological interactions of nanoparticles (NP). Unfortunately, NP are beyond the diffraction limit of resolution for conventional light microscopy (~200 nm). Fluorescence and electron microscopy techniques commonly used to examine NP interactions with biological substrates have drawbacks that limit their usefulness in toxicological investigation of NP. EM is labor intensive and slow, while fluorescence carries the risk of photobleaching the sample and has size resolution limits. In addition, many relevant particles lack intrinsic fluorescence and therefore can not be detected in this manner. To surmount these limitations, we evaluated the potential of a novel combination of darkfield and confocal laser scanning microscopy (DF-CLSM) for the efficient 3D detection of NP in human lung cells. The DF-CLSM approach utilizes the contrast enhancements of darkfield microscopy to detect objects below the diffraction limit of 200 nm based on their light scattering properties and interfaces it with the power of confocal microscopy to resolve objects in the z-plane. RESULTS: Validation of the DF-CLSM method using fluorescent polystyrene beads demonstrated spatial colocalization of particle fluorescence (Confocal) and scattered transmitted light (Darkfield) along the X, Y, and Z axes. DF-CLSM imaging was able to detect and provide reasonable spatial locations of 27 nm TiO2 particles in relation to the stained nuclei of exposed BEAS 2B cells. Statistical analysis of particle proximity to cellular nuclei determined a significant difference between 5 min and 2 hr particle exposures suggesting a time-dependent internalization process. CONCLUSIONS: DF-CLSM microscopy is an alternative to current conventional light and electron microscopy methods that does not rely on particle fluorescence or contrast in electron density. DF-CLSM is especially well suited to the task of establishing the spatial localization of nanoparticles within cells, a critical topic in nanotoxicology. This technique has advantages to 2D darkfield microscopy as it visualizes nanoparticles in 3D using confocal microscopy. Use of this technique should aid toxicological studies related to observation of NP interactions with biological endpoints at cellular and subcellular levels.


Asunto(s)
Endocitosis/fisiología , Pulmón/citología , Microscopía Confocal/métodos , Nanopartículas/ultraestructura , Animales , Línea Celular , Colorantes Fluorescentes/metabolismo , Humanos , Tamaño de la Partícula , Poliestirenos/metabolismo , Titanio/metabolismo
16.
Birth Defects Res B Dev Reprod Toxicol ; 89(5): 396-407, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20973054

RESUMEN

BACKGROUND: Birth weight in humans has been inversely associated with adult disease risk. Results of animal studies have varied depending on species, strain, and treatment. METHODS: We compared birth weight and adult health in offspring following 50% maternal undernutrition on gestation days (GD) 1-15 (UN1-15) or GD 10-21 (UN10-21) in Sprague Dawley and Wistar rats. Offspring from food-deprived dams were weighed and cross-fostered to control dams. Litters were weighed during lactation and initiating at weaning males were fed either control or a high-fat diet. Young and mature adult offspring were evaluated for obesity, blood pressure (BP), insulin response to oral glucose, and serum lipids. Nephron endowment, renal glucocorticoid receptor, and renin-aldosterone-angiotensin system components were measured. RESULTS: The UN10-21 groups had birth weights lower than controls and transient catch up growth by weaning. Neither strain demonstrated obesity or dyslipidemia following prenatal undernutrition, but long-term body weight deficits occurred in the UN groups of both strains. High-fat diet fed offspring gained more weight than control offspring without an effect of prenatal nutrition. Sprague Dawley were slightly more susceptible than Wistar rats to altered insulin response and increased BP following gestational undernutrition. Nephron endowment in Sprague Dawley but not Wistar offspring was lower in the UN10-21 groups. Glucocorticoid and renin-aldosterone-angiotensin system pathways were not altered. CONCLUSIONS: The most consistent effect of maternal undernutrition was elevated BP in offspring. Long-term health effects occurred with undernutrition during either window, but the UN10-21 period resulted in lower birth weight and more severe adult health effects.


Asunto(s)
Animales Recién Nacidos/crecimiento & desarrollo , Peso al Nacer , Desnutrición/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Peso Corporal , Femenino , Insulina/sangre , Leptina/sangre , Lípidos/sangre , Masculino , Embarazo , Fenómenos Fisiologicos de la Nutrición Prenatal , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Destete
17.
Curr Protoc Cytom ; Chapter 2: Unit2.16, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20938918

RESUMEN

The purchase of a confocal microscope is a difficult decision. Many factors need to be considered, which include hardware, software, company, support, service, and price. These issues are discussed to help guide the purchasing process.


Asunto(s)
Investigación Biomédica/instrumentación , Laboratorios/economía , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Toma de Decisiones en la Organización , Lentes , Microscopía Confocal/economía , Óptica y Fotónica , Departamento de Compras en Hospital , Control de Calidad , Programas Informáticos
18.
Environ Health Perspect ; 118(7): 902-8, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20413366

RESUMEN

BACKGROUND: The mechanisms of action of many environmental agents commonly involve oxidative stress resulting from mitochondrial dysfunction. Zinc is a common environmental metallic contaminant that has been implicated in a variety of oxidant-dependent toxicological responses. Unlike ions of other transition metals such as iron, copper, and vanadium, Zn(2+) does not generate reactive oxygen species (ROS) through redox cycling. OBJECTIVE: To characterize the role of oxidative stress in zinc-induced toxicity. METHODS: We used an integrated imaging approach that employs the hydrogen peroxide (H2O2)-specific fluorophore Peroxy Green 1 (PG1), the mitochondrial potential sensor 5,5 ,6,6 -tetrachloro-1,1 ,3,3 -tetraethylbenzimidazolylcarbocyanine iodide (JC-1), and the mitochondria-targeted form of the redox-sensitive genetically encoded fluorophore MTroGFP1 in living cells. RESULTS: Zinc treatment in the presence of the Zn(2+) ionophore pyrithione of A431 skin carcinoma cells preloaded with the H(2)O(2)-specific indicator PG1 resulted in a significant increase in H(2)O(2) production that could be significantly inhibited with the mitochondrial inhibitor carbonyl cyanide 3-chlorophenylhydrazone. Mitochondria were further implicated as the source of zinc-induced H(2)O(2) formation by the observation that exposure to zinc caused a loss of mitochondrial membrane potential. Using MTroGFP1, we showed that zinc exposure of A431 cells induces a rapid loss of reducing redox potential in mitochondria. We also demonstrated that zinc exposure results in rapid swelling of mitochondria isolated from mouse hearts. CONCLUSION: Taken together, these findings show a disruption of mitochondrial integrity, H(2)O(2) formation, and a shift toward positive redox potential in cells exposed to zinc. These data demonstrate the utility of real-time, live-cell imaging to study the role of oxidative stress in toxicological responses.


Asunto(s)
Salud Ambiental/métodos , Sustancias Peligrosas/toxicidad , Enfermedades Mitocondriales/inducido químicamente , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/análisis , Bencimidazoles , Carbocianinas , Carbonil Cianuro m-Clorofenil Hidrazona/metabolismo , Colorantes Fluorescentes , Humanos , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Enfermedades Mitocondriales/fisiopatología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Células Tumorales Cultivadas , Zinc/toxicidad
19.
J Biomed Opt ; 14(2): 024022, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19405752

RESUMEN

The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, would be enhanced by the availability of narrowband emitting, UV excited lanthanide calibration beads. 0.5-, 3-, and 5-microm beads containing a luminescent europium-complex are manufactured. The luminescence distribution of the 5-microm beads is measured with a time-delayed light-scatter-gated luminescence flow cytometer to have a 7.0% coefficient of variation (CV) The spacial distribution of the europium-complex in individual beads is determined to be homogeneous by confocal microscopy. Emission peaks are found at 592, 616 (width 9.9 nm), and 685 nm with a PARISS spectrophotometer. The kinetics of the luminescence bleaching caused by UV irradiation of the 0.5- and 5-microm beads measured under LED excitation with a fluorescence microscope indicate that bleaching does not interfere with their imaging. The luminescence lifetimes in water and air were 340 and 460 micros, respectively. Thus, these 5-microm beads can be used for spectral calibration of microscopes equipped with a spectrograph, as test particles for time-delayed luminescence flow cytometers, and possibly as labels for macromolecules and cells.


Asunto(s)
Citometría de Flujo/normas , Elementos de la Serie de los Lantanoides/análisis , Elementos de la Serie de los Lantanoides/química , Mediciones Luminiscentes/normas , Microscopía Fluorescente/normas , Espectrometría de Fluorescencia/normas , Calibración , Microesferas
20.
Birth Defects Res A Clin Mol Teratol ; 79(9): 631-41, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17676605

RESUMEN

BACKGROUND: A proposed mechanism for ethanol teratogenicity entails ethanol-mediated reductions in retinoic acid (RA). This premise was investigated utilizing a mouse model, with limb reduction defects as the teratogenic end point. METHODS: Ethanol, Disulfiram, or BMS-189453 was administered to C57BL/6J mice on the 9(th) day of pregnancy. Forelimb morphology was assessed on gestation day 18 using Alcian blue and Alizarin red staining. Nile blue sulfate or LysoTracker Red (LTR) vital staining identified cell death in the limb bud. The ability of RA to prevent ethanol-induced cell death was assessed by coadministration followed by laser scanning confocal microscopic examination of LTR-staining. In situ hybridization and qPCR were used to examine gene expression in treated limb buds. RESULTS: Ethanol, Disulfiram, and BMS-189453 resulted in postaxial ectrodactyly, intermediate ectrodactyly, and other digital defects. Excessive Nile blue sulfate staining was evident in the presumptive AER following each of the three exposures. Ethanol-induced LTR staining was prevented by RA supplementation. Both in situ hybridization and qPCR illustrated decreases in Shh and Tbx5 in ethanol-exposed embryos as compared to control. CONCLUSIONS: Contrary to studies of prolonged RA deficiency, acute exposure to functional antagonists of RA results in limb defects that are morphologically similar to those caused by ethanol. The rescue of ethanol-induced cell death by RA and similar changes in Shh transcription further suggest that RA contributes to ethanol-induced limb dysmorphology. Moreover, the repression of key mediators of limb development soon after ethanol exposure adds to the existing knowledge of the pathogenic effects of ethanol.


Asunto(s)
Etanol/toxicidad , Deformidades Congénitas de las Extremidades/inducido químicamente , Tretinoina/metabolismo , Anomalías Inducidas por Medicamentos/embriología , Anomalías Inducidas por Medicamentos/genética , Anomalías Inducidas por Medicamentos/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Femenino , Proteínas Hedgehog/genética , Hibridación in Situ , Deformidades Congénitas de las Extremidades/embriología , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/metabolismo , Ratones , Reacción en Cadena de la Polimerasa , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas de Dominio T Box/genética , Teratógenos/toxicidad , Tretinoina/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...