Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(20): 14315-14325, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36200733

RESUMEN

The lifecycle of black carbon (BC)-containing particles from biomass burns is examined using aircraft and surface observations of the BC mixing state for plume ages from ∼15 min to 10 days. Because BC is nonvolatile and chemically inert, changes in the mixing state of BC-containing particles are driven solely by changes in particle coating, which is mainly secondary organic aerosol (SOA). The coating mass initially increases rapidly (kgrowth = 0.84 h-1), then remains relatively constant for 1-2 days as plume dilution no longer supports further growth, and then decreases slowly until only ∼30% of the maximum coating mass remains after 10 days (kloss = 0.011 h-1). The mass ratio of coating-to-core for a BC-containing particle with a 100 nm mass-equivalent diameter BC core reaches a maximum of ∼20 after a few hours and drops to ∼5 after 10 days of aging. The initial increase in coating mass can be used to determine SOA formation rates. The slow loss of coating material, not captured in global models, comprises the dominant fraction of the lifecycle of these particles. Coating-to-core mass ratios of BC particles in the stratosphere are much greater than those in the free troposphere indicating a different lifecycle.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/química , Contaminantes Atmosféricos/análisis , Biomasa , Carbono/química , Monitoreo del Ambiente , Hollín
2.
Sci Adv ; 8(14): eabn3488, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35385304

RESUMEN

Predictions of the Earth system, such as weather forecasts and climate projections, require models informed by observations at many levels. Some methods for integrating models and observations are very systematic and comprehensive (e.g., data assimilation), and some are single purpose and customized (e.g., for model validation). We review current methods and best practices for integrating models and observations. We highlight how future developments can enable advanced heterogeneous observation networks and models to improve predictions of the Earth system (including atmosphere, land surface, oceans, cryosphere, and chemistry) across scales from weather to climate. As the community pushes to develop the next generation of models and data systems, there is a need to take a more holistic, integrated, and coordinated approach to models, observations, and their uncertainties to maximize the benefit for Earth system prediction and impacts on society.

3.
Geophys Res Lett ; 48(19)2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34776556

RESUMEN

The warm Gulf Stream sea surface temperatures strongly impact the evolution of winter clouds behind atmospheric cold fronts. Such cloud evolution remains challenging to model. The Gulf Stream is too wide within the ERA5 and MERRA2 reanalyses, affecting the turbulent surface fluxes. Known problems within the ERA5 boundary layer (too-dry and too-cool with too strong westerlies), ascertained primarily from ACTIVATE 2020 campaign aircraft dropsondes and secondarily from older buoy measurements, reinforce surface flux biases. In contrast, MERRA2 winter surface winds and air-sea temperature/humidity differences are slightly too weak, producing surface fluxes that are too low. Reanalyses boundary layer heights in the strongly forced winter cold-air-outbreak regime are realistic, whereas late-summer quiescent stable boundary layers are too shallow. Nevertheless, the reanalysis biases are small, and reanalyses adequately support their use for initializing higher-resolution cloud process modeling studies of cold-air outbreaks.

4.
Nat Commun ; 12(1): 6416, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34741045

RESUMEN

Low clouds play a key role in the Earth-atmosphere energy balance and influence agricultural production and solar-power generation. Smoke aloft has been found to enhance marine stratocumulus through aerosol-cloud interactions, but its role in regions with strong human activities and complex monsoon circulation remains unclear. Here we show that biomass burning aerosols aloft strongly increase the low cloud coverage over both land and ocean in subtropical southeastern Asia. The degree of this enhancement and its spatial extent are comparable to that in the Southeast Atlantic, even though the total biomass burning emissions in Southeast Asia are only one-fifth of those in Southern Africa. We find that a synergetic effect of aerosol-cloud-boundary layer interaction with the monsoon is the main reason for the strong semi-direct effect and enhanced low cloud formation in southeastern Asia.

5.
Atmos Chem Phys ; 21(13): 10499-10526, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34377145

RESUMEN

Cloud drop number concentrations (N d) over the western North Atlantic Ocean (WNAO) are generally highest during the winter (DJF) and lowest in summer (JJA), in contrast to aerosol proxy variables (aerosol optical depth, aerosol index, surface aerosol mass concentrations, surface cloud condensation nuclei (CCN) concentrations) that generally peak in spring (MAM) and JJA with minima in DJF. Using aircraft, satellite remote sensing, ground-based in situ measurement data, and reanalysis data, we characterize factors explaining the divergent seasonal cycles and furthermore probe into factors influencing N d on seasonal timescales. The results can be summarized well by features most pronounced in DJF, including features associated with cold-air outbreak (CAO) conditions such as enhanced values of CAO index, planetary boundary layer height (PBLH), low-level liquid cloud fraction, and cloud-top height, in addition to winds aligned with continental outflow. Data sorted into high- and low-N d days in each season, especially in DJF, revealed that all of these conditions were enhanced on the high-N d days, including reduced sea level pressure and stronger wind speeds. Although aerosols may be more abundant in MAM and JJA, the conditions needed to activate those particles into cloud droplets are weaker than in colder months, which is demonstrated by calculations of the strongest (weakest) aerosol indirect effects in DJF (JJA) based on comparing N d to perturbations in four different aerosol proxy variables (total and sulfate aerosol optical depth, aerosol index, surface mass concentration of sulfate). We used three machine learning models and up to 14 input variables to infer about most influential factors related to N d for DJF and JJA, with the best performance obtained with gradient-boosted regression tree (GBRT) analysis. The model results indicated that cloud fraction was the most important input variable, followed by some combination (depending on season) of CAO index and surface mass concentrations of sulfate and organic carbon. Future work is recommended to further understand aspects uncovered here such as impacts of free tropospheric aerosol entrainment on clouds, degree of boundary layer coupling, wet scavenging, and giant CCN effects on aerosol-N d relationships, updraft velocity, and vertical structure of cloud properties such as adiabaticity that impact the satellite estimation of N d.

6.
Atmos Environ (1994) ; 2542021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34211332

RESUMEN

Coastal southeast Florida experiences a wide range of aerosol conditions, including African dust, biomass burning (BB) aerosols, as well as sea salt and other locally-emitted aerosols. These aerosols are important sources of cloud condensation nuclei (CCN), which play an essential role in governing cloud radiative properties. As marine environments dominate the surface of Earth, CCN characteristics in coastal southeast Florida have broad implications for other regions with the added feature that this site is perturbed by both natural and anthropogenic emissions. This study investigates the influence of different air mass types on CCN concentrations at 0.2% (CCN0.2%) and 1.0% (CCN1.0%) supersaturation (SS) based on ground site measurements during selected months in 2013, 2017, and 2018. Average CCN0.2% and CCN1.0% concentrations were 373 ± 200 cm-3 and 584 ± 323 cm-3, respectively, for four selected days with minimal presence of African dust and BB (i.e., background days). CCN concentrations were not elevated on the four days with highest influence of African dust (289 ± 104 cm-3 [0.2% SS] and 591 ± 302 cm-3 [1.0% SS]), consistent with high dust mass concentrations comprised of coarse particles that are few in number. In contrast, CCN concentrations were substantially enhanced on the five days with the greatest impact from BB (1408 ± 976 cm-3 [0.2% SS] and 3337 ± 1252 cm-3 [1.0% SS]). Ratios of CCN0.2%:CCN1.0% were used to compare the hygroscopicity of the aerosols associated with African dust, BB, and background days. Average ratios were similar for days impacted by African dust and BB (0.54 ± 0.17 and 0.55 ± 0.17, respectively). A 29% higher average ratio was observed on background days (0.71 ± 0.14), owing in part to a strong presence of sea salt and reduced presence of more hydrophobic species such as those of a carbonaceous or mineral-dust nature. Finally, periods of heavy rainfall were shown to effectively decrease both CCN0.2% and CCN1.0% concentrations. However, the rate varied at which such concentrations increased after the rain. This work contributes knowledge on the nucleating ability of African dust and BB in a marine environment after varying periods of atmospheric transport (days to weeks). The results can be used to understand the hygroscopicity of these air mass types, predict how they may influence cloud properties, and provide a valuable model constraint when predicting CCN concentrations in comparable situations.

7.
J Clin Med ; 9(8)2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32756441

RESUMEN

BACKGROUND: Air pollution is increasingly recognized as a risk factor for acute exacerbation of chronic obstructive pulmonary disease (COPD). Changing climate and weather patterns can modify the levels and types of air pollutants. For example, dust outbreaks increase particulate air pollution. OBJECTIVE: This paper examines the effect of Saharan dust storms on the concentration of coarse particulate matter in Miami, and its association with the risk of acute exacerbation of COPD (AECOPD). METHODS: In this prospective cohort study, 296 COPD patients (with 313 events) were followed between 2013 and 2016. We used Light Detection and Ranging (LIDAR) and satellite-based Aerosol Optical Depth (AOD) to identify dust events and quantify particulate matter (PM) exposure, respectively. Exacerbation events were modeled with respect to location- and time-lagged dust and PM exposures, using multivariate logistic regressions. MEASUREMENTS AND MAIN RESULTS: Dust duration and intensity increased yearly during the study period. During dust events, AOD increased by 51% and particulate matter ≤2.5 µm in aerodynamic diameter (PM2.5) increased by 25%. Adjusting for confounders, ambient temperature and local PM2.5 exposure, one-day lagged dust exposure was associated with 4.9 times higher odds of two or more (2+ hereto after) AECOPD events (odds ratio = 4.9; 95% CI = 1.8-13.4; p < 0.001). Ambient temperature exposure also showed a significant association with 2+ and 3+ AECOPD events. The risk of AECOPD lasted up to 15 days after dust exposure, declining from 10× higher on day 0 to 20% higher on day 15. CONCLUSIONS: Saharan dust outbreaks observed in Miami elevate the concentration of PM and increase the risk of AECOPD in COPD patients with recurring exacerbations.

8.
J Geophys Res Atmos ; 125(6)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32699733

RESUMEN

Decades of atmospheric research have focused on the Western North Atlantic Ocean (WNAO) region because of its unique location that offers accessibility for airborne and ship measurements, gradients in important atmospheric parameters, and a range of meteorological regimes leading to diverse conditions that are poorly understood. This work reviews these scientific investigations for the WNAO region, including the East Coast of North America and the island of Bermuda. Over 50 field campaigns and long-term monitoring programs, in addition to 715 peer-reviewed publications between 1946 and 2019 have provided a firm foundation of knowledge for these areas. Of particular importance in this region has been extensive work at the island of Bermuda that is host to important time series records of oceanic and atmospheric variables. Our review categorizes WNAO atmospheric research into eight major categories, with some studies fitting into multiple categories (relative %): Aerosols (25%), Gases (24%), Development/Validation of Techniques, Models, and Retrievals (18%), Meteorology and Transport (9%), Air-Sea Interactions (8%), Clouds/Storms (8%), Atmospheric Deposition (7%), and Aerosol-Cloud Interactions (2%). Recommendations for future research are provided in the categories highlighted above.

9.
Atmosphere (Basel) ; 11(11): 1212, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34211764

RESUMEN

This study focuses on the long-term aerosol and precipitation chemistry measurements from colocated monitoring sites in Southern Florida between 2013 and 2018. A positive matrix factorization (PMF) model identified six potential emission sources impacting the study area. The PMF model solution yielded the following source concentration profiles: (i) combustion; (ii) fresh sea salt; (iii) aged sea salt; (iv) secondary sulfate; (v) shipping emissions; and (vi) dust. Based on these results, concentration-weighted trajectory maps were developed to identify sources contributing to the PMF factors. Monthly mean precipitation pH values ranged from 4.98 to 5.58, being positively related to crustal species and negatively related to SO4 2-. Sea salt dominated wet deposition volume-weighted concentrations year-round without much variability in its mass fraction in contrast to stronger seasonal changes in PM2.5 composition where fresh sea salt was far less influential. The highest mean annual deposition fluxes were attributed to Cl-, NO3 -, SO4 2-, and Na+ between April and October. Nitrate is strongly correlated with dust constituents (unlike sea salt) in precipitation samples, indicative of efficient partitioning to dust. Interrelationships between precipitation chemistry and aerosol species based on long-term surface data provide insight into aerosol-cloud-precipitation interactions.

10.
Atmos Chem Phys ; 19(23): 14493-14516, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-35069711

RESUMEN

Ascension Island (8° S, 14.5° W) is located at the northwestern edge of the south Atlantic stratocumulus deck, with most clouds in August characterized by surface observers as "stratocumulus and cumulus with bases at different levels", and secondarily as "cumulus of limited vertical extent" and occurring within a typically decoupled boundary layer. Field measurements have previously shown that the highest amounts of sunlight-absorbing smoke occur annually within the marine boundary layer during August. On more smoke-free days, the diurnal cycle in cloudiness includes a nighttime maximum in cloud liquid water path and rain, an afternoon cloud minimum, and a secondary late-afternoon increase in cumulus and rain. The afternoon low-cloud minimum is more pronounced on days with a smokier boundary layer. The cloud liquid water paths are also reduced throughout most of the diurnal cycle when more smoke is present, with the difference from cleaner conditions most pronounced at night. Precipitation is infrequent. An exception is the mid-morning, when the boundary layer deepens and liquid water paths increase. The data support a view that a radiatively enhanced decoupling persisting throughout the night is key to understanding the changes in the cloud diurnal cycle when the boundary layer is smokier. Under these conditions, the nighttime stratiform cloud layer does not always recouple to the sub-cloud layer, and the decoupling maintains more moisture within the sub-cloud layer. After the sun rises, enhanced shortwave absorption in a smokier boundary layer can drive a vertical ascent that momentarily couples the sub-cloud layer to the cloud layer, deepening the boundary layer and ventilating moisture throughout, a process that may also be aided by a shift to smaller droplets. After noon, shortwave absorption within smokier boundary layers again reduces the upper-level stratiform cloud and the sub-cloud relative humidity, discouraging further cumulus development and again strengthening a decoupling that lasts longer into the night. The novel diurnal mechanism provides a new challenge for cloud models to emulate. The lower free troposphere above cloud is more likely to be cooler, when boundary layer smoke is present, and lower free-tropospheric winds are stronger and more northeasterly, with both (meteorological) influences supporting further smoke entrainment into the boundary layer from above.

11.
Bull Am Meteorol Soc ; 100(1): 93-121, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32042201

RESUMEN

The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the north-Pacific trade-winds. The study centered on 7 round-trips of the NSF NCAR Gulfstream V (GV) between Sacramento, CA and Kona, Hawaii between 1 July and 15 August 2015. The CSET observing strategy was to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later. GFS forecast trajectories were used to plan the outbound flight to Hawaii with updated forecast trajectories setting the return flight plan two days later. Two key elements of the CSET observing system were the newly developed HIAPER Cloud Radar (HCR) and the High Spectral Resolution Lidar (HSRL). Together they provided unprecedented characterizations of aerosol, cloud and precipitation structures that were combined with in situ measurements of aerosol, cloud, precipitation, and turbulence properties. The cloud systems sampled included solid stratocumulus infused with smoke from Canadian wildfires, mesoscale cloud-precipitation complexes, and patches of shallow cumuli in very clean environments. Ultra-clean layers observed frequently near the top of the boundary layer were often associated with shallow, optically thin, layered veil clouds. The extensive aerosol, cloud, drizzle and boundary layer sampling made over open areas of the Northeast Pacific along 2-day trajectories during CSET is unprecedented and will enable modeling studies of boundary layer cloud system evolution and the role of different processes in that evolution.

13.
Rev Geophys ; 56(2): 409-453, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30148283

RESUMEN

The cloud droplet number concentration (N d) is of central interest to improve the understanding of cloud physics and for quantifying the effective radiative forcing by aerosol-cloud interactions. Current standard satellite retrievals do not operationally provide N d, but it can be inferred from retrievals of cloud optical depth (τ c) cloud droplet effective radius (r e) and cloud top temperature. This review summarizes issues with this approach and quantifies uncertainties. A total relative uncertainty of 78% is inferred for pixel-level retrievals for relatively homogeneous, optically thick and unobscured stratiform clouds with favorable viewing geometry. The uncertainty is even greater if these conditions are not met. For averages over 1° ×1° regions the uncertainty is reduced to 54% assuming random errors for instrument uncertainties. In contrast, the few evaluation studies against reference in situ observations suggest much better accuracy with little variability in the bias. More such studies are required for a better error characterization. N d uncertainty is dominated by errors in r e, and therefore, improvements in r e retrievals would greatly improve the quality of the N d retrievals. Recommendations are made for how this might be achieved. Some existing N d data sets are compared and discussed, and best practices for the use of N d data from current passive instruments (e.g., filtering criteria) are recommended. Emerging alternative N d estimates are also considered. First, new ideas to use additional information from existing and upcoming spaceborne instruments are discussed, and second, approaches using high-quality ground-based observations are examined.

14.
Surv Geophys ; 38(6): 1199-1236, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31997841

RESUMEN

Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...