Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(27): 29682-29690, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39005817

RESUMEN

Thioredoxin reductase (TrxR) is an essential antioxidant in most cells; it reduces thioredoxin (Trx) and several more substrates, utilizing NADPH. However, the enzyme's internal active site is too small to accommodate the Trx substrate. Thus, TrxR evolved a disulfide shuttle that can carry reducing equivalents from the active site to the docking site of thioredoxin on the enzyme surface. Yet, in all available atomic structures of TrxR, access to the active site by the shuttle is sterically blocked. We find with computational dynamics that thermal motion at 37 °C allows the oxidized shuttle x to transiently access the active site. Once the shuttle is reduced, it becomes polar. Again, with molecular dynamics, we show that the polar shuttle will move outward toward the solution interface, whereas the oxidized, neutral shuttle will not. This work provides physical evidence for crucial steps in the enzyme mechanism that thus far were just conjectures. The total shuttle motion, from the active site toward the surface, is over 20 Å. TrxR may thus also be termed a molecular machine.

2.
J Magn Reson ; 363: 107676, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38815459

RESUMEN

It is advantageous to investigate milli-to-micro-second conformational exchange data contained in the solution NMR protein relaxation data other than 15N nuclei. Not only does one search under another lamp post, one also looks at dynamics at other time scales. The HSQC-ROESY 1HN relaxation dispersion experiment for amide protons as introduced by Ishima, et al (1998). J. Am. Soc. 120, 10534-10542, is such an experiment, but has by the authors been advised to only be used for perdeuterated proteins to avoid complication with the 1H-1H multiple-spin effects. This is regretful, since not all proteins can be perdeuterated. Here we analyze in detail the 1HN relaxation terms for this experiment for a fully proteated protein. Indeed, the 1HN relaxation theory is in this case complex and includes dipolar-dipolar relaxation interference and TOCSY transfers. With simulate both of these effects and show that the interference can be exploited for detecting exchange broadening. The TOCSY effect is shown to minor, and when it is not, a solution is provided. We apply the HSQC-ROESY experiment, with a small modification to suppress ROESY crosspeaks, to a 7 kDa GB1 protein that is just 15N and 13C labeled. At 10 °C we cannot detect any conformational exchange broadening: the 1HN R2 relaxation rates with 1.357 kHz spinlock field not larger than those recorded with a 12.136 kHz spinlock field. This means that there is no exchange broadening that can be differentially suppressed with the applied fields. Either there is no broadening, or the broadening is effectively suppressed by all fields, or the broadening cannot be suppressed by either of the fields. While initially this seems to be a disappointing result, we feel that this work establishes that the HSQC-ROESY experiment is very robust. It can indeed be utilized for proteated proteins upto about 30 kDa. This could be opening the study the milli-microsecond conformational dynamics as reported by 1HN exchange broadening for many more proteins.


Asunto(s)
Isótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular , Proteínas , Isótopos de Nitrógeno/química , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Algoritmos , Conformación Proteica , Protones
3.
Protein Sci ; 32(5): e4630, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36949673

RESUMEN

There is ample computational, but only sparse experimental data suggesting that pico-ns motions with 1 Å amplitude are pervasive in proteins in solution. Such motions, if present in reality, must deeply affect protein function and protein entropy. Several NMR relaxation experiments have provided insights into motions of proteins in solution, but they primarily report on azimuthal angle variations of vectors of covalently-linked atoms. As such, these measurements are not sensitive to distance fluctuations, and cannot but under-represent the dynamical properties of proteins. Here we analyze a novel NMR relaxation experiment to measure amide proton transverse relaxation rates in uniformly 15 N labeled proteins, and present results for protein domain GB1 at 283 and 303 K. These relaxation rates depend on fluctuations of dipolar interactions between 1 HN and many nearby protons on both the backbone and sidechains. Importantly, they also report on fluctuations in the distances between these protons. We obtained a large mismatch between rates computed from the crystal structure of GB1 and the experimental rates. But when the relaxation rates were calculated from a 200 ns molecular dynamics trajectory using a novel program suite, we obtained a substantial improvement in the correspondence of experimental and theoretical rates. As such, this work provides novel experimental evidence of widespread motions in proteins. Since the improvements are substantial, but not sufficient, this approach may also present a new benchmark to help improve the theoretical forcefields underlying the molecular dynamics calculations.


Asunto(s)
Proteínas , Protones , Proteínas/química , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Entropía , Resonancia Magnética Nuclear Biomolecular/métodos
5.
J Biol Chem ; 293(27): 10796-10809, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29764935

RESUMEN

Hsp70 chaperones bind to various protein substrates for folding, trafficking, and degradation. Considerable structural information is available about how prokaryotic Hsp70 (DnaK) binds substrates, but less is known about mammalian Hsp70s, of which there are 13 isoforms encoded in the human genome. Here, we report the interaction between the human Hsp70 isoform heat shock cognate 71-kDa protein (Hsc70 or HSPA8) and peptides derived from the microtubule-associated protein Tau, which is linked to Alzheimer's disease. For structural studies, we used an Hsc70 construct (called BETA) comprising the substrate-binding domain but lacking the lid. Importantly, we found that truncating the lid does not significantly impair Hsc70's chaperone activity or allostery in vitro Using NMR, we show that BETA is partially dynamically disordered in the absence of substrate and that binding of the Tau sequence GKVQIINKKG (with a KD = 500 nm) causes dramatic rigidification of BETA. NOE distance measurements revealed that Tau binds to the canonical substrate-binding cleft, similar to the binding observed with DnaK. To further develop BETA as a tool for studying Hsc70 interactions, we also measured BETA binding in NMR and fluorescent competition assays to peptides derived from huntingtin, insulin, a second Tau-recognition sequence, and a KFERQ-like sequence linked to chaperone-mediated autophagy. We found that the insulin C-peptide binds BETA with high affinity (KD < 100 nm), whereas the others do not (KD > 100 µm). Together, our findings reveal several similarities and differences in how prokaryotic and mammalian Hsp70 isoforms interact with different substrate peptides.


Asunto(s)
Proteínas del Choque Térmico HSC70/metabolismo , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Proteínas tau/metabolismo , Adenosina Trifosfato/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Sitios de Unión , Cristalografía por Rayos X , Proteínas del Choque Térmico HSC70/química , Proteínas del Choque Térmico HSC70/genética , Humanos , Unión Proteica , Conformación Proteica , Proteínas tau/química , Proteínas tau/genética
6.
J Biol Chem ; 293(11): 4014-4025, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29414793

RESUMEN

Protein-protein interactions (PPIs) are an important category of putative drug targets. Improvements in high-throughput screening (HTS) have significantly accelerated the discovery of inhibitors for some categories of PPIs. However, methods suitable for screening multiprotein complexes (e.g. those composed of three or more different components) have been slower to emerge. Here, we explored an approach that uses reconstituted multiprotein complexes (RMPCs). As a model system, we chose heat shock protein 70 (Hsp70), which is an ATP-dependent molecular chaperone that interacts with co-chaperones, including DnaJA2 and BAG2. The PPIs between Hsp70 and its co-chaperones stimulate nucleotide cycling. Thus, to re-create this ternary protein system, we combined purified human Hsp70 with DnaJA2 and BAG2 and then screened 100,000 diverse compounds for those that inhibited co-chaperone-stimulated ATPase activity. This HTS campaign yielded two compounds with promising inhibitory activity. Interestingly, one inhibited the PPI between Hsp70 and DnaJA2, whereas the other seemed to inhibit the Hsp70-BAG2 complex. Using secondary assays, we found that both compounds inhibited the PPIs through binding to allosteric sites on Hsp70, but neither affected Hsp70's intrinsic ATPase activity. Our RMPC approach expands the toolbox of biochemical HTS methods available for studying difficult-to-target PPIs in multiprotein complexes. The results may also provide a starting point for new chemical probes of the Hsp70 system.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Descubrimiento de Drogas , Proteínas del Choque Térmico HSP40/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento , Preparaciones Farmacéuticas/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Humanos , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Unión Proteica
7.
J Biol Chem ; 293(7): 2370-2380, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29255093

RESUMEN

Heat shock protein 70 (Hsp70) and Hsp90 are molecular chaperones that play essential roles in tumor growth by stabilizing pro-survival client proteins. However, although the development of Hsp90 inhibitors has benefited from the identification of clients, such as Raf-1 proto-oncogene, Ser/Thr kinase (RAF1), that are particularly dependent on this chaperone, no equivalent clients for Hsp70 have been reported. Using chemical probes and MDA-MB-231 breast cancer cells, we found here that the inhibitors of apoptosis proteins, including c-IAP1 and X-linked inhibitor of apoptosis protein (XIAP), are obligate Hsp70 clients that are rapidly (within ∼3-12 h) lost after inhibition of Hsp70 but not of Hsp90. Mutagenesis and pulldown experiments revealed multiple Hsp70-binding sites on XIAP, suggesting that it is a direct, physical Hsp70 client. Interestingly, this interaction was unusually tight (∼260 nm) for an Hsp70-client interaction and involved non-canonical regions of the chaperone. Finally, we also found that Hsp70 inhibitor treatments caused loss of c-IAP1 and XIAP in multiple cancer cell lines and in tumor xenografts, but not in healthy cells. These results are expected to significantly accelerate Hsp70 drug discovery by providing XIAP as a pharmacodynamic biomarker. More broadly, our findings further suggest that Hsp70 and Hsp90 have partially non-overlapping sets of obligate protein clients in cancer cells.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Biomarcadores/metabolismo , Línea Celular Tumoral , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Unión Proteica , Proto-Oncogenes Mas , Proteína Inhibidora de la Apoptosis Ligada a X/genética
8.
Sci Rep ; 7(1): 3537, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28615625

RESUMEN

In this study we examined the anti-leukemia activity of a small molecule inhibitor of Hsp70 proteins, apoptozole (Az), and hybrids in which it is linked to an inhibitor of either Hsp90 (geldanamycin) or Abl kinase (imatinib). The results of NMR studies revealed that Az associates with an ATPase domain of Hsc70 and thus blocks ATP binding to the protein. Observations made in the cell study indicated that Az treatment promotes leukemia cell death by activating caspase-dependent apoptosis without affecting the caspase-independent apoptotic pathway. Importantly, the hybrids composed of Az and geldanamycin, which have high inhibitory activities towards both Hsp70 and Hsp90, exhibit enhanced anti-leukemia activity relative to the individual inhibitors. However, the Az and imatinib hybrids have weak inhibitory activities towards Hsp70 and Abl, and display lower cytotoxicity against leukemia cells compared to those of the individual constituents. The results of a mechanistic study showed that the active hybrid molecules promote leukemia cell death through a caspase-dependent apoptotic pathway. Taken together, the findings suggest that Hsp70 inhibitors as well as their hybrids can serve as potential anti-leukemia agents.


Asunto(s)
Benzamidas/metabolismo , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Imidazoles/metabolismo , Apoptosis , Benzoquinonas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/química , Humanos , Mesilato de Imatinib/metabolismo , Lactamas Macrocíclicas/metabolismo , Espectroscopía de Resonancia Magnética
9.
Cell Stress Chaperones ; 22(2): 173-189, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28220454

RESUMEN

Hsp70 proteins are key to maintaining intracellular protein homeostasis. To carry out this task, they employ a large number of cochaperones and adapter proteins. Here, we review what is known about the interaction between the chaperones and partners, with a strong slant toward structural biology. Hsp70s in general, and Hsc70 (HSPA8) in particular, display an amazing array of interfaces with their protein cofactors. We also review the known interactions between Hsp70s with lipids and with active compounds that may become leads toward Hsp70 modulation for treatment of a variety of diseases.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas HSP70 de Choque Térmico/química , Lípidos/química , Modelos Moleculares , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
10.
Biomol NMR Assign ; 11(1): 11-15, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27699616

RESUMEN

Hsc70 is the constitutively expressed mammalian heat shock 70 kDa (Hsp70) cytosolic chaperone. It plays a central role in cellular proteostasis and protein trafficking. Here, we present the backbone and methyl group assignments for the 386-residue nucleotide binding domain of the human protein. This domain controls the chaperone's allostery, binds multiple co-chaperones and is the target of several classes of known chemical Hsp70 inhibitors. The NMR assignments are based on common triple resonance experiments with triple labeled protein, and on several 15N and 13C-resolved 3D NOE experiments with methyl-reprotonated samples. A combination of computer and manual data interpretation was used.


Asunto(s)
Adenosina Difosfato/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Resonancia Magnética Nuclear Biomolecular , Humanos , Peso Molecular , Dominios Proteicos
11.
Cell Chem Biol ; 23(8): 992-1001, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27499529

RESUMEN

Heat shock protein 70 (Hsp70) is a chaperone that normally scans the proteome and initiates the turnover of some proteins (termed clients) by linking them to the degradation pathways. This activity is critical to normal protein homeostasis, yet it appears to fail in diseases associated with abnormal protein accumulation. It is not clear why Hsp70 promotes client degradation under some conditions, while sparing that protein under others. Here, we used a combination of chemical biology and genetic strategies to systematically perturb the affinity of Hsp70 for the model client, tau. This approach revealed that tight complexes between Hsp70 and tau were associated with enhanced turnover while transient interactions favored tau retention. These results suggest that client affinity is one important parameter governing Hsp70-mediated quality control.


Asunto(s)
Benzotiazoles/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Modelos Biológicos , Tauopatías/tratamiento farmacológico , Tauopatías/metabolismo , Tiazolidinas/farmacología , Proteínas tau/metabolismo , Benzotiazoles/química , Relación Dosis-Respuesta a Droga , Proteínas HSP70 de Choque Térmico/química , Células HeLa , Humanos , Estructura Molecular , Estabilidad Proteica/efectos de los fármacos , Relación Estructura-Actividad , Tiazolidinas/química , Células Tumorales Cultivadas , Proteínas tau/química
12.
J Biol Chem ; 291(38): 19848-57, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27474739

RESUMEN

Heat shock cognate protein 70 (Hsc70) regulates protein homeostasis through its reversible interactions with client proteins. Hsc70 has two major domains: a nucleotide-binding domain (NBD), that hydrolyzes ATP, and a substrate-binding domain (SBD), where clients are bound. Members of the BAG family of co-chaperones, including Bag1 and Bag3, are known to accelerate release of both ADP and client from Hsc70. The release of nucleotide is known to be mediated by interactions between the conserved BAG domain and the Hsc70 NBD. However, less is known about the regions required for client release, and it is often assumed that this activity also requires the BAG domain. It is important to better understand this step because it determines how long clients remain in the inactive, bound state. Here, we report the surprising observation that truncated versions of either human Bag1 or Bag3, comprised only the BAG domain, promoted rapid release of nucleotide, but not client, in vitro Rather, we found that a non-canonical interaction between Bag1/3 and the Hsc70 SBD is sufficient for accelerating this step. Moreover, client release did not seem to require the BAG domain or Hsc70 NBD. These results suggest that Bag1 and Bag3 control the stability of the Hsc70-client complex using at least two distinct protein-protein contacts, providing a previously under-appreciated layer of molecular regulation in the human Hsc70 system.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Reguladoras de la Apoptosis/química , Proteínas de Unión al ADN/química , Proteínas del Choque Térmico HSC70/química , Complejos Multiproteicos/química , Factores de Transcripción/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas del Choque Térmico HSC70/genética , Proteínas del Choque Térmico HSC70/metabolismo , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Unión Proteica , Dominios Proteicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
J Biol Chem ; 291(35): 18096-106, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27405763

RESUMEN

hsc-70 (HSPA8) is a cytosolic molecular chaperone, which plays a central role in cellular proteostasis, including quality control during protein refolding and regulation of protein degradation. hsc-70 is pivotal to the process of macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy. The latter requires hsc-70 interaction with negatively charged phosphatidylserine (PS) at the endosomal limiting membrane. Herein, by combining plasmon resonance, NMR spectroscopy, and amino acid mutagenesis, we mapped the C terminus of the hsc-70 LID domain as the structural interface interacting with endosomal PS, and we estimated an hsc-70/PS equilibrium dissociation constant of 4.7 ± 0.1 µm. This interaction is specific and involves a total of 4-5 lysine residues. Plasmon resonance and NMR results were further experimentally validated by hsc-70 endosomal binding experiments and endosomal microautophagy assays. The discovery of this previously unknown contact surface for hsc-70 in this work elucidates the mechanism of hsc-70 PS/membrane interaction for cytosolic cargo internalization into endosomes.


Asunto(s)
Autofagia/fisiología , Endosomas/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Membranas Intracelulares/metabolismo , Fosfatidilserinas/metabolismo , Animales , Línea Celular , Endosomas/química , Endosomas/genética , Proteínas del Choque Térmico HSC70/química , Proteínas del Choque Térmico HSC70/genética , Membranas Intracelulares/química , Ratones , Fosfatidilserinas/química , Fosfatidilserinas/genética
14.
Biochemistry ; 55(23): 3261-9, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27214228

RESUMEN

Many microorganisms use flavin-dependent thymidylate synthase (FDTS) to synthesize the essential nucleotide 2'-deoxythymidine 5'-monophosphate (dTMP) from 2'-deoxyuridine 5'-monophosphate (dUMP), 5,10-methylenetetrahydrofolate (CH2THF), and NADPH. FDTSs have a structure that is unrelated to the thymidylate synthase used by humans and a very different mechanism. Here we report nuclear magnetic resonance evidence that FDTS ionizes N3 of dUMP using an active-site arginine. The ionized form of dUMP is largely responsible for the changes in the flavin absorbance spectrum of FDTS upon dUMP binding. dUMP analogues also suggest that the phosphate of dUMP acts as the base that removes the proton from C5 of the dUMP-methylene intermediate in the FDTS-catalyzed reaction. These findings establish additional differences between the mechanisms of FDTS and human thymidylate synthase.


Asunto(s)
Flavinas/metabolismo , NADP/metabolismo , Protones , Timidilato Sintasa/química , Timidilato Sintasa/metabolismo , Catálisis , Dominio Catalítico , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Conformación Proteica
15.
J Biol Chem ; 290(21): 13115-27, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25864199

RESUMEN

The constitutively expressed heat shock protein 70 kDa (Hsc70) is a major chaperone protein responsible for maintaining proteostasis, yet how its structure translates into functional decisions regarding client fate is still unclear. We previously showed that Hsc70 preserved aberrant Tau, but it remained unknown if selective inhibition of the activity of this Hsp70 isoform could facilitate Tau clearance. Using single point mutations in the nucleotide binding domain, we assessed the effect of several mutations on the functions of human Hsc70. Biochemical characterization revealed that one mutation abolished both Hsc70 ATPase and refolding activities. This variant resembled the ADP-bound conformer at all times yet remained able to interact with cofactors, nucleotides, and substrates appropriately, resembling a dominant negative Hsc70 (DN-Hsc70). We then assessed the effects of this DN-Hsc70 on its client Tau. DN-Hsc70 potently facilitated Tau clearance via the proteasome in cells and brain tissue, in contrast to wild type Hsc70 that stabilized Tau. Thus, DN-Hsc70 mimics the action of small molecule pan Hsp70 inhibitors with regard to Tau metabolism. This shift in Hsc70 function by a single point mutation was the result of a change in the chaperome associated with Hsc70 such that DN-Hsc70 associated more with Hsp90 and DnaJ proteins, whereas wild type Hsc70 was more associated with other Hsp70 isoforms. Thus, isoform-selective targeting of Hsc70 could be a viable therapeutic strategy for tauopathies and possibly lead to new insights in chaperone complex biology.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas del Choque Térmico HSC70/antagonistas & inhibidores , Proteínas del Choque Térmico HSC70/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Proteínas tau/metabolismo , Western Blotting , Células Cultivadas , Citosol/metabolismo , Polarización de Fluorescencia , Técnica del Anticuerpo Fluorescente , Proteínas del Choque Térmico HSC70/genética , Humanos , Espectroscopía de Resonancia Magnética , Mutación/genética , Unión Proteica , Conformación Proteica , Isoformas de Proteínas , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Proteínas tau/genética
16.
Biochemistry ; 54(17): 2693-708, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25849895

RESUMEN

Heme oxygenase (HO) catalyzes a key step in heme homeostasis: the O2- and NADPH-cytochrome P450 reductase-dependent conversion of heme to biliverdin, Fe, and CO through a process in which the heme participates both as a prosthetic group and as a substrate. Mammals contain two isoforms of this enzyme, HO2 and HO1, which share the same α-helical fold forming the catalytic core and heme binding site, as well as a membrane spanning helix at their C-termini. However, unlike HO1, HO2 has an additional 30-residue N-terminus as well as two cysteine-proline sequences near the C-terminus that reside in heme regulatory motifs (HRMs). While the role of the additional N-terminal residues of HO2 is not yet understood, the HRMs have been proposed to reversibly form a thiol/disulfide redox switch that modulates the affinity of HO2 for ferric heme as a function of cellular redox poise. To further define the roles of the N- and C-terminal regions unique to HO2, we used multiple spectroscopic techniques to characterize these regions of the human HO2. Nuclear magnetic resonance spectroscopic experiments with HO2 demonstrate that, when the HRMs are in the oxidized state (HO2(O)), both the extra N-terminal and the C-terminal HRM-containing regions are disordered. However, protein NMR experiments illustrate that, under reducing conditions, the C-terminal region gains some structure as the Cys residues in the HRMs undergo reduction (HO2(R)) and, in experiments employing a diamagnetic protoporphyrin, suggest a redox-dependent interaction between the core and the HRM domains. Further, electron nuclear double resonance and X-ray absorption spectroscopic studies demonstrate that, upon reduction of the HRMs to the sulfhydryl form, a cysteine residue from the HRM region ligates to a ferric heme. Taken together with EPR measurements, which show the appearance of a new low-spin heme signal in reduced HO2, it appears that a cysteine residue(s) in the HRMs directly interacts with a second bound heme.


Asunto(s)
Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo/metabolismo , Análisis Espectral/métodos , Secuencia de Aminoácidos , Hemo/química , Hemo Oxigenasa (Desciclizante)/química , Datos de Secuencia Molecular , Oxidación-Reducción , Homología de Secuencia de Aminoácido
17.
Biochemistry ; 54(18): 2858-73, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25790102

RESUMEN

De novo protein design is a biologically relevant approach that provides a novel process in elucidating protein folding and modeling the metal centers of metalloproteins in a completely unrelated or simplified fold. An integral step in de novo protein design is the establishment of a well-folded scaffold with one conformation, which is a fundamental characteristic of many native proteins. Here, we report the NMR solution structure of apo α3DIV at pH 7.0, a de novo designed three-helix bundle peptide containing a triscysteine motif (Cys18, Cys28, and Cys67) that binds toxic heavy metals. The structure comprises 1067 NOE restraints derived from multinuclear multidimensional NOESY, as well as 138 dihedral angles (ψ, φ, and χ1). The backbone and heavy atoms of the 20 lowest energy structures have a root mean square deviation from the mean structure of 0.79 (0.16) Å and 1.31 (0.15) Å, respectively. When compared to the parent structure α3D, the substitution of Leu residues to Cys enhanced the α-helical content of α3DIV while maintaining the same overall topology and fold. In addition, solution studies on the metalated species illustrated metal-induced stability. An increase in the melting temperatures was observed for Hg(II), Pb(II), or Cd(II) bound α3DIV by 18-24 °C compared to its apo counterpart. Further, the extended X-ray absorption fine structure analysis on Hg(II)-α3DIV produced an average Hg(II)-S bond length at 2.36 Å, indicating a trigonal T-shaped coordination environment. Overall, the structure of apo α3DIV reveals an asymmetric distorted triscysteine metal binding site, which offers a model for native metalloregulatory proteins with thiol-rich ligands that function in regulating toxic heavy metals, such as ArsR, CadC, MerR, and PbrR.


Asunto(s)
Apoproteínas/química , Contaminantes Ambientales/química , Metaloproteínas/química , Metales Pesados/química , Péptidos/química , Secuencia de Aminoácidos , Sitios de Unión , Cadmio/química , Cationes Bivalentes , Cisteína/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Plomo/química , Mercurio/química , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Ingeniería de Proteínas , Estructura Secundaria de Proteína , Soluciones
18.
J Biol Chem ; 289(43): 29836-58, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25196843

RESUMEN

Heme oxygenase (HO) catalyzes the rate-limiting step in the O2-dependent degradation of heme to biliverdin, CO, and iron with electrons delivered from NADPH via cytochrome P450 reductase (CPR). Biliverdin reductase (BVR) then catalyzes conversion of biliverdin to bilirubin. We describe mutagenesis combined with kinetic, spectroscopic (fluorescence and NMR), surface plasmon resonance, cross-linking, gel filtration, and analytical ultracentrifugation studies aimed at evaluating interactions of HO-2 with CPR and BVR. Based on these results, we propose a model in which HO-2 and CPR form a dynamic ensemble of complex(es) that precede formation of the productive electron transfer complex. The (1)H-(15)N TROSY NMR spectrum of HO-2 reveals specific residues, including Leu-201, near the heme face of HO-2 that are affected by the addition of CPR, implicating these residues at the HO/CPR interface. Alanine substitutions at HO-2 residues Leu-201 and Lys-169 cause a respective 3- and 22-fold increase in K(m) values for CPR, consistent with a role for these residues in CPR binding. Sedimentation velocity experiments confirm the transient nature of the HO-2 · CPR complex (K(d) = 15.1 µM). Our results also indicate that HO-2 and BVR form a very weak complex that is only captured by cross-linking. For example, under conditions where CPR affects the (1)H-(15)N TROSY NMR spectrum of HO-2, BVR has no effect. Fluorescence quenching experiments also suggest that BVR binds HO-2 weakly, if at all, and that the previously reported high affinity of BVR for HO is artifactual, resulting from the effects of free heme (dissociated from HO) on BVR fluorescence.


Asunto(s)
Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo/metabolismo , NADPH-Ferrihemoproteína Reductasa/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Apoproteínas/metabolismo , Cromatografía en Gel , Cumarinas/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Cristalografía por Rayos X , Deuterio/metabolismo , Fluorescencia , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Peso Molecular , Mutagénesis/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Resonancia por Plasmón de Superficie , Ultracentrifugación
19.
J Biol Chem ; 289(5): 2908-17, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24327656

RESUMEN

Protein phosphatase 5 (PP5) is auto-inhibited by intramolecular interactions with its tetratricopeptide repeat (TPR) domain. Hsp90 has been shown to bind PP5 to activate its phosphatase activity. However, the functional implications of binding Hsp70 to PP5 are not yet clear. In this study, we find that both Hsp90 and Hsp70 bind to PP5 using a luciferase fragment complementation assay. A fluorescence polarization assay shows that Hsp90 (MEEVD motif) binds to the TPR domain of PP5 almost 3-fold higher affinity than Hsp70 (IEEVD motif). However, Hsp70 binding to PP5 stimulates higher phosphatase activity of PP5 than the binding of Hsp90. We find that PP5 forms a stable 1:1 complex with Hsp70, but the interaction appears asymmetric with Hsp90, with one PP5 binding the dimer. Solution NMR studies reveal that Hsc70 and PP5 proteins are dynamically independent in complex, tethered by a disordered region that connects the Hsc70 core and the IEEVD-TPR contact area. This tethered binding is expected to allow PP5 to carry out multi-site dephosphorylation of Hsp70-bound clients with a range of sizes and shapes. Together, these results demonstrate that Hsp70 recruits PP5 and activates its phosphatase activity which suggests dual roles for PP5 that might link chaperone systems with signaling pathways in cancer and development.


Asunto(s)
Glicoproteínas/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Activación Enzimática/fisiología , Glicoproteínas/química , Glicoproteínas/genética , Células HEK293 , Proteínas del Choque Térmico HSC70/química , Proteínas del Choque Térmico HSC70/genética , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Luciferasas/genética , Modelos Químicos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Estructura Terciaria de Proteína , Transducción de Señal/fisiología
20.
ACS Med Chem Lett ; 4(11)2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24312699

RESUMEN

The rhodacyanine, MKT-077, has anti-proliferative activity against cancer cell lines through its ability to inhibit members of the heat shock protein 70 (Hsp70) family of molecular chaperones. However, MKT-077 is rapidly metabolized, which limits its use as either a chemical probe or potential therapeutic. We report the synthesis and characterization of MKT-077 analogs designed for greater stability. The most potent molecules, such as 30 (JG-98), were at least 3-fold more active than MKT-077 against the breast cancer cell lines MDA-MB-231 and MCF-7 (EC50 values of 0.4 ± 0.03 µM and 0.7 ± 0.2 µM, respectively). The analogs modestly destabilized the chaperone "clients", Akt1 and Raf1, and induced apoptosis in these cells. Further, the microsomal half-life of JG-98 was improved at least 7-fold (t1/2 = 37 min) compared to MKT-077 (t1/2 < 5 min). Finally, NMR titration experiments suggested that these analogs bind an allosteric site that is known to accommodate MKT-077. These studies advance MKT-077 analogs as chemical probes for studying Hsp70's roles in cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA