Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
2.
Nat Commun ; 12(1): 6454, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753957

RESUMEN

Over the next decade, more than a million eukaryotic species are expected to be fully sequenced. This has the potential to improve our understanding of genotype and phenotype crosstalk, gene function and interactions, and answer evolutionary questions. Here, we develop a machine-learning approach for utilizing phylogenetic profiles across 1154 eukaryotic species. This method integrates co-evolution across eukaryotic clades to predict functional interactions between human genes and the context for these interactions. We benchmark our approach showing a 14% performance increase (auROC) compared to previous methods. Using this approach, we predict functional annotations for less studied genes. We focus on DNA repair and verify that 9 of the top 50 predicted genes have been identified elsewhere, with others previously prioritized by high-throughput screens. Overall, our approach enables better annotation of function and functional interactions and facilitates the understanding of evolutionary processes underlying co-evolution. The manuscript is accompanied by a webserver available at: https://mlpp.cs.huji.ac.il .


Asunto(s)
Aprendizaje Automático , Reparación del ADN/genética , Reparación del ADN/fisiología , Evolución Molecular , Humanos , Filogenia , Análisis de Secuencia de ADN/métodos
3.
Elife ; 102021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34635206

RESUMEN

Polygenic risk scores (PRSs) have been offered since 2019 to screen in vitro fertilization embryos for genetic liability to adult diseases, despite a lack of comprehensive modeling of expected outcomes. Here we predict, based on the liability threshold model, the expected reduction in complex disease risk following polygenic embryo screening for a single disease. A strong determinant of the potential utility of such screening is the selection strategy, a factor that has not been previously studied. When only embryos with a very high PRS are excluded, the achieved risk reduction is minimal. In contrast, selecting the embryo with the lowest PRS can lead to substantial relative risk reductions, given a sufficient number of viable embryos. We systematically examine the impact of several factors on the utility of screening, including: variance explained by the PRS, number of embryos, disease prevalence, parental PRSs, and parental disease status. We consider both relative and absolute risk reductions, as well as population-averaged and per-couple risk reductions, and also examine the risk of pleiotropic effects. Finally, we confirm our theoretical predictions by simulating 'virtual' couples and offspring based on real genomes from schizophrenia and Crohn's disease case-control studies. We discuss the assumptions and limitations of our model, as well as the potential emerging ethical concerns.


Asunto(s)
Enfermedad de Crohn/genética , Fertilización In Vitro , Pruebas Genéticas , Modelos Genéticos , Herencia Multifactorial , Diagnóstico Preimplantación , Esquizofrenia/genética , Simulación por Computador , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Valor Predictivo de las Pruebas , Embarazo , Medición de Riesgo , Factores de Riesgo
4.
Schizophr Bull ; 47(3): 785-795, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33141894

RESUMEN

BACKGROUND: The main challenge in the study of schizophrenia is its high heterogeneity. While it is generally accepted that there exist several biological mechanisms that may define distinct schizophrenia subtypes, they have not been identified yet. We performed comprehensive gene expression analysis to search for molecular signals that differentiate schizophrenia patients from healthy controls and examined whether an identified signal was concentrated in a subgroup of the patients. METHODS: Transcriptome sequencing of 14 superior temporal gyrus (STG) samples of subjects with schizophrenia and 15 matched controls from the Stanley Medical Research Institute (SMRI) was performed. Differential expression and pathway enrichment analysis results were compared to an independent cohort. Replicability was tested on 6 additional independent datasets. RESULTS: The 2 STG cohorts showed high replicability. Pathway enrichment analysis of the down-regulated genes pointed to proteasome-related pathways. Meta-analysis of differential expression identified down-regulation of 12 of 39 proteasome subunit genes in schizophrenia. The signal of proteasome subunits down-regulation was replicated in 6 additional datasets (overall 8 cohorts with 267 schizophrenia and 266 control samples, from 5 brain regions). The signal was concentrated in a subgroup of patients with schizophrenia. CONCLUSIONS: We detected global down-regulation of proteasome subunits in a subgroup of patients with schizophrenia. We hypothesize that the down-regulation of proteasome subunits leads to proteasome dysfunction that causes accumulation of ubiquitinated proteins, which has been recently detected in a subgroup of schizophrenia patients. Thus, down-regulation of proteasome subunits might define a biological subtype of schizophrenia.


Asunto(s)
Encéfalo/enzimología , Perfilación de la Expresión Génica , Complejo de la Endopetidasa Proteasomal/metabolismo , Esquizofrenia/enzimología , Transcriptoma , Adulto , Anciano , Anciano de 80 o más Años , Conjuntos de Datos como Asunto , Diagnóstico , Regulación hacia Abajo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Complejo de la Endopetidasa Proteasomal/genética , Esquizofrenia/genética , Lóbulo Temporal/enzimología , Transcriptoma/genética
5.
Cell ; 179(6): 1424-1435.e8, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31761530

RESUMEN

The increasing proportion of variance in human complex traits explained by polygenic scores, along with progress in preimplantation genetic diagnosis, suggests the possibility of screening embryos for traits such as height or cognitive ability. However, the expected outcomes of embryo screening are unclear, which undermines discussion of associated ethical concerns. Here, we use theory, simulations, and real data to evaluate the potential gain of embryo screening, defined as the difference in trait value between the top-scoring embryo and the average embryo. The gain increases very slowly with the number of embryos but more rapidly with the variance explained by the score. Given current technology, the average gain due to screening would be ≈2.5 cm for height and ≈2.5 IQ points for cognitive ability. These mean values are accompanied by wide prediction intervals, and indeed, in large nuclear families, the majority of children top-scoring for height are not the tallest.


Asunto(s)
Embrión de Mamíferos/metabolismo , Pruebas Genéticas , Herencia Multifactorial/genética , Adulto , Familia , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo
6.
Nat Commun ; 10(1): 4295, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31541153

RESUMEN

Sexual dimorphism in the mammalian immune system is manifested as more frequent and severe infectious diseases in males and, on the other hand, higher rates of autoimmune disease in females, yet insights underlying those differences are still lacking. Here we characterize sex differences in the immune system by RNA and ATAC sequence profiling of untreated and interferon-induced immune cell types in male and female mice. We detect very few differentially expressed genes between male and female immune cells except in macrophages from three different tissues. Accordingly, very few genomic regions display differences in accessibility between sexes. Transcriptional sexual dimorphism in macrophages is mediated by genes of innate immune pathways, and increases after interferon stimulation. Thus, the stronger immune response of females may be due to more activated innate immune pathways prior to pathogen invasion.


Asunto(s)
Sistema Inmunológico , Caracteres Sexuales , Transcriptoma , Animales , Biología Computacional , Epigenómica , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genómica , Humanos , Inmunidad Innata/genética , Interferones/metabolismo , Macrófagos , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos , ARN , Factores Sexuales
7.
BMC Cancer ; 19(1): 783, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391007

RESUMEN

BACKGROUND: In recent years, research on cancer predisposition germline variants has emerged as a prominent field. The identity of somatic mutations is based on a reliable mapping of the patient germline variants. In addition, the statistics of germline variants frequencies in healthy individuals and cancer patients is the basis for seeking candidates for cancer predisposition genes. The Cancer Genome Atlas (TCGA) is one of the main sources of such data, providing a diverse collection of molecular data including deep sequencing for more than 30 types of cancer from > 10,000 patients. METHODS: Our hypothesis in this study is that whole exome sequences from blood samples of cancer patients are not expected to show systematic differences among cancer types. To test this hypothesis, we analyzed common and rare germline variants across six cancer types, covering 2241 samples from TCGA. In our analysis we accounted for inherent variables in the data including the different variant calling protocols, sequencing platforms, and ethnicity. RESULTS: We report on substantial batch effects in germline variants associated with cancer types. We attribute the effect to the specific sequencing centers that produced the data. Specifically, we measured 30% variability in the number of reported germline variants per sample across sequencing centers. The batch effect is further expressed in nucleotide composition and variant frequencies. Importantly, the batch effect causes substantial differences in germline variant distribution patterns across numerous genes, including prominent cancer predisposition genes such as BRCA1, RET, MAX, and KRAS. For most of known cancer predisposition genes, we found a distinct batch-dependent difference in germline variants. CONCLUSION: TCGA germline data is exposed to strong batch effects with substantial variabilities among TCGA sequencing centers. We claim that those batch effects are consequential for numerous TCGA pan-cancer studies. In particular, these effects may compromise the reliability and the potency to detect new cancer predisposition genes. Furthermore, interpretation of pan-cancer analyses should be revisited in view of the source of the genomic data after accounting for the reported batch effects.


Asunto(s)
Exoma , Genoma Humano , Genómica , Mutación de Línea Germinal , Neoplasias/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Estimación de Kaplan-Meier , Neoplasias/diagnóstico , Neoplasias/mortalidad , Neoplasias/terapia , Medicina de Precisión/métodos
8.
Nature ; 518(7537): 102-6, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25487149

RESUMEN

Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance. When MI occurs early in life, genetic inheritance is a major component to risk. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families, whereas common variants at more than 45 loci have been associated with MI risk in the population. Here we evaluate how rare mutations contribute to early-onset MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (≤50 years in males and ≤60 years in females) along with MI-free controls. We identified two genes in which rare coding-sequence mutations were more frequent in MI cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare non-synonymous mutations were at 4.2-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). Approximately 2% of early MI cases harbour a rare, damaging mutation in LDLR; this estimate is similar to one made more than 40 years ago using an analysis of total cholesterol. Among controls, about 1 in 217 carried an LDLR coding-sequence mutation and had plasma LDL cholesterol > 190 mg dl(-1). At apolipoprotein A-V (APOA5), carriers of rare non-synonymous mutations were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol, whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding-sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase and apolipoprotein C-III (refs 18, 19). Combined, these observations suggest that, as well as LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.


Asunto(s)
Alelos , Apolipoproteínas A/genética , Exoma/genética , Predisposición Genética a la Enfermedad/genética , Infarto del Miocardio/genética , Receptores de LDL/genética , Factores de Edad , Edad de Inicio , Apolipoproteína A-V , Estudios de Casos y Controles , LDL-Colesterol/sangre , Enfermedad de la Arteria Coronaria/genética , Femenino , Genética de Población , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Infarto del Miocardio/sangre , National Heart, Lung, and Blood Institute (U.S.) , Triglicéridos/sangre , Estados Unidos
9.
Proc Natl Acad Sci U S A ; 111(4): E455-64, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24443550

RESUMEN

Genetic studies have revealed thousands of loci predisposing to hundreds of human diseases and traits, revealing important biological pathways and defining novel therapeutic hypotheses. However, the genes discovered to date typically explain less than half of the apparent heritability. Because efforts have largely focused on common genetic variants, one hypothesis is that much of the missing heritability is due to rare genetic variants. Studies of common variants are typically referred to as genomewide association studies, whereas studies of rare variants are often simply called sequencing studies. Because they are actually closely related, we use the terms common variant association study (CVAS) and rare variant association study (RVAS). In this paper, we outline the similarities and differences between RVAS and CVAS and describe a conceptual framework for the design of RVAS. We apply the framework to address key questions about the sample sizes needed to detect association, the relative merits of testing disruptive alleles vs. missense alleles, frequency thresholds for filtering alleles, the value of predictors of the functional impact of missense alleles, the potential utility of isolated populations, the value of gene-set analysis, and the utility of de novo mutations. The optimal design depends critically on the selection coefficient against deleterious alleles and thus varies across genes. The analysis shows that common variant and rare variant studies require similarly large sample collections. In particular, a well-powered RVAS should involve discovery sets with at least 25,000 cases, together with a substantial replication set.


Asunto(s)
Variación Genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Mutación
10.
Nucleic Acids Res ; 41(22): e205, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24214960

RESUMEN

The emergence of massively parallel sequencing technology has revolutionized microbial profiling, allowing the unprecedented comparison of microbial diversity across time and space in a wide range of host-associated and environmental ecosystems. Although the high-throughput nature of such methods enables the detection of low-frequency bacteria, these advances come at the cost of sequencing read length, limiting the phylogenetic resolution possible by current methods. Here, we present a generic approach for integrating short reads from large genomic regions, thus enabling phylogenetic resolution far exceeding current methods. The approach is based on a mapping to a statistical model that is later solved as a constrained optimization problem. We demonstrate the utility of this method by analyzing human saliva and Drosophila samples, using Illumina single-end sequencing of a 750 bp amplicon of the 16S rRNA gene. Phylogenetic resolution is significantly extended while reducing the number of falsely detected bacteria, as compared with standard single-region Roche 454 Pyrosequencing. Our approach can be seamlessly applied to simultaneous sequencing of multiple genes providing a higher resolution view of the composition and activity of complex microbial communities.


Asunto(s)
Bacterias/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Acetobacter/genética , Acetobacter/aislamiento & purificación , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Drosophila melanogaster/microbiología , Humanos , Modelos Estadísticos , Saliva/microbiología , Wolbachia/genética , Wolbachia/aislamiento & purificación
11.
Nat Immunol ; 14(6): 633-43, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23624555

RESUMEN

The differentiation of hematopoietic stem cells into cells of the immune system has been studied extensively in mammals, but the transcriptional circuitry that controls it is still only partially understood. Here, the Immunological Genome Project gene-expression profiles across mouse immune lineages allowed us to systematically analyze these circuits. To analyze this data set we developed Ontogenet, an algorithm for reconstructing lineage-specific regulation from gene-expression profiles across lineages. Using Ontogenet, we found differentiation stage-specific regulators of mouse hematopoiesis and identified many known hematopoietic regulators and 175 previously unknown candidate regulators, as well as their target genes and the cell types in which they act. Among the previously unknown regulators, we emphasize the role of ETV5 in the differentiation of γδ T cells. As the transcriptional programs of human and mouse cells are highly conserved, it is likely that many lessons learned from the mouse model apply to humans.


Asunto(s)
Algoritmos , Regulación de la Expresión Génica/inmunología , Sistema Inmunológico/metabolismo , Transcripción Genética/inmunología , Animales , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/inmunología , Humanos , Sistema Inmunológico/citología , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transactivadores/genética , Transactivadores/inmunología , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Transcriptoma/genética , Transcriptoma/inmunología
12.
Nature ; 493(7434): 694-8, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23364702

RESUMEN

Genetic and biochemical analyses of RNA interference (RNAi) and microRNA (miRNA) pathways have revealed proteins such as Argonaute and Dicer as essential cofactors that process and present small RNAs to their targets. Well-validated small RNA pathway cofactors such as these show distinctive patterns of conservation or divergence in particular animal, plant, fungal and protist species. We compared 86 divergent eukaryotic genome sequences to discern sets of proteins that show similar phylogenetic profiles with known small RNA cofactors. A large set of additional candidate small RNA cofactors have emerged from functional genomic screens for defects in miRNA- or short interfering RNA (siRNA)-mediated repression in Caenorhabditis elegans and Drosophila melanogaster, and from proteomic analyses of proteins co-purifying with validated small RNA pathway proteins. The phylogenetic profiles of many of these candidate small RNA pathway proteins are similar to those of known small RNA cofactor proteins. We used a Bayesian approach to integrate the phylogenetic profile analysis with predictions from diverse transcriptional coregulation and proteome interaction data sets to assign a probability for each protein for a role in a small RNA pathway. Testing high-confidence candidates from this analysis for defects in RNAi silencing, we found that about one-half of the predicted small RNA cofactors are required for RNAi silencing. Many of the newly identified small RNA pathway proteins are orthologues of proteins implicated in RNA splicing. In support of a deep connection between the mechanism of RNA splicing and small-RNA-mediated gene silencing, the presence of the Argonaute proteins and other small RNA components in the many species analysed strongly correlates with the number of introns in those species.


Asunto(s)
Caenorhabditis elegans/genética , Variación Genética , Filogenia , ARN Interferente Pequeño/genética , Animales , Caenorhabditis elegans/clasificación , Proteínas de Caenorhabditis elegans/genética , Eucariontes/clasificación , Eucariontes/genética , Genoma/genética , MicroARNs/genética , Proteoma , Empalme del ARN
13.
Proc Natl Acad Sci U S A ; 110(8): 2946-51, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23382184

RESUMEN

Much of the knowledge about cell differentiation and function in the immune system has come from studies in mice, but the relevance to human immunology, diseases, and therapy has been challenged, perhaps more from anecdotal than comprehensive evidence. To this end, we compare two large compendia of transcriptional profiles of human and mouse immune cell types. Global transcription profiles are conserved between corresponding cell lineages. The expression patterns of most orthologous genes are conserved, particularly for lineage-specific genes. However, several hundred genes show clearly divergent expression across the examined cell lineages, and among them, 169 genes did so even with highly stringent criteria. Finally, regulatory mechanisms--reflected by regulators' differential expression or enriched cis-elements--are conserved between the species but to a lower degree, suggesting that distinct regulation may underlie some of the conserved transcriptional responses.


Asunto(s)
Perfilación de la Expresión Génica , Sistema Inmunológico/metabolismo , Transcripción Genética , Animales , Humanos , Activación de Linfocitos , Ratones , Linfocitos T/inmunología
14.
Proc Natl Acad Sci U S A ; 109(4): 1193-8, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22223662

RESUMEN

Human genetics has been haunted by the mystery of "missing heritability" of common traits. Although studies have discovered >1,200 variants associated with common diseases and traits, these variants typically appear to explain only a minority of the heritability. The proportion of heritability explained by a set of variants is the ratio of (i) the heritability due to these variants (numerator), estimated directly from their observed effects, to (ii) the total heritability (denominator), inferred indirectly from population data. The prevailing view has been that the explanation for missing heritability lies in the numerator--that is, in as-yet undiscovered variants. While many variants surely remain to be found, we show here that a substantial portion of missing heritability could arise from overestimation of the denominator, creating "phantom heritability." Specifically, (i) estimates of total heritability implicitly assume the trait involves no genetic interactions (epistasis) among loci; (ii) this assumption is not justified, because models with interactions are also consistent with observable data; and (iii) under such models, the total heritability may be much smaller and thus the proportion of heritability explained much larger. For example, 80% of the currently missing heritability for Crohn's disease could be due to genetic interactions, if the disease involves interaction among three pathways. In short, missing heritability need not directly correspond to missing variants, because current estimates of total heritability may be significantly inflated by genetic interactions. Finally, we describe a method for estimating heritability from isolated populations that is not inflated by genetic interactions.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética , Genética de Población , Modelos Genéticos , Herencia Multifactorial/genética , Humanos
15.
Nature ; 478(7370): 476-82, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21993624

RESUMEN

The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ∼4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ∼60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.


Asunto(s)
Evolución Molecular , Genoma Humano/genética , Genoma/genética , Mamíferos/genética , Animales , Enfermedad , Exones/genética , Genómica , Salud , Humanos , Anotación de Secuencia Molecular , Filogenia , ARN/clasificación , ARN/genética , Selección Genética/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
16.
J Comput Biol ; 18(11): 1723-41, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21999287

RESUMEN

Bacteria are the unseen majority on our planet, with millions of species and comprising most of the living protoplasm. We propose a novel approach for reconstruction of the composition of an unknown mixture of bacteria using a single Sanger-sequencing reaction of the mixture. Our method is based on compressive sensing theory, which deals with reconstruction of a sparse signal using a small number of measurements. Utilizing the fact that in many cases each bacterial community is comprised of a small subset of all known bacterial species, we show the feasibility of this approach for determining the composition of a bacterial mixture. Using simulations, we show that sequencing a few hundred base-pairs of the 16S rRNA gene sequence may provide enough information for reconstruction of mixtures containing tens of species, out of tens of thousands, even in the presence of realistic measurement noise. Finally, we show initial promising results when applying our method for the reconstruction of a toy experimental mixture with five species. Our approach may have a potential for a simple and efficient way for identifying bacterial species compositions in biological samples. All supplementary data and the MATLAB code are available at www.broadinstitute.org/?orzuk/publications/BCS/.


Asunto(s)
Bacterias/genética , Simulación por Computador , Metagenoma , Modelos Genéticos , Tipificación Molecular/métodos , Algoritmos , Cadenas de Markov , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Relación Señal-Ruido
17.
Nucleic Acids Res ; 38(19): e179, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20699269

RESUMEN

Identification of rare variants by resequencing is important both for detecting novel variations and for screening individuals for known disease alleles. New technologies enable low-cost resequencing of target regions, although it is still prohibitive to test more than a few individuals. We propose a novel pooling design that enables the recovery of novel or known rare alleles and their carriers in groups of individuals. The method is based on a Compressed Sensing (CS) approach, which is general, simple and efficient. CS allows the use of generic algorithmic tools for simultaneous identification of multiple variants and their carriers. We model the experimental procedure and show via computer simulations that it enables the recovery of rare alleles and their carriers in larger groups than were possible before. Our approach can also be combined with barcoding techniques to provide a feasible solution based on current resequencing costs. For example, when targeting a small enough genomic region (∼100 bp) and using only ∼10 sequencing lanes and ∼10 distinct barcodes per lane, one recovers the identity of 4 rare allele carriers out of a population of over 4000 individuals. We demonstrate the performance of our approach over several publicly available experimental data sets.


Asunto(s)
Alelos , Tamización de Portadores Genéticos/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Simulación por Computador , Humanos
18.
Cell ; 142(3): 409-19, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20673990

RESUMEN

Recently, more than 1000 large intergenic noncoding RNAs (lincRNAs) have been reported. These RNAs are evolutionarily conserved in mammalian genomes and thus presumably function in diverse biological processes. Here, we report the identification of lincRNAs that are regulated by p53. One of these lincRNAs (lincRNA-p21) serves as a repressor in p53-dependent transcriptional responses. Inhibition of lincRNA-p21 affects the expression of hundreds of gene targets enriched for genes normally repressed by p53. The observed transcriptional repression by lincRNA-p21 is mediated through the physical association with hnRNP-K. This interaction is required for proper genomic localization of hnRNP-K at repressed genes and regulation of p53 mediates apoptosis. We propose a model whereby transcription factors activate lincRNAs that serve as key repressors by physically associating with repressive complexes and modulate their localization to sets of previously active genes.


Asunto(s)
Regulación hacia Abajo , ARN no Traducido/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Transcripción Genética
19.
Science ; 327(5967): 883-6, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20056855

RESUMEN

The human genome contains hundreds of regions whose patterns of genetic variation indicate recent positive natural selection, yet for most the underlying gene and the advantageous mutation remain unknown. We developed a method, composite of multiple signals (CMS), that combines tests for multiple signals of selection and increases resolution by up to 100-fold. By applying CMS to candidate regions from the International Haplotype Map, we localized population-specific selective signals to 55 kilobases (median), identifying known and novel causal variants. CMS can not just identify individual loci but implicates precise variants selected by evolution.


Asunto(s)
Variación Genética , Genoma Humano , Selección Genética , Biología Computacional/métodos , ADN Intergénico/genética , Evolución Molecular , Sitios Genéticos , Haplotipos , Humanos , Polimorfismo Genético , Grupos de Población/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Programas Informáticos
20.
Nat Methods ; 7(1): 47-9, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19946276

RESUMEN

Chromatin structure and transcription factor localization can be assayed genome-wide by sequencing genomic DNA fractionated by protein occupancy or other properties, but current technologies involve multiple steps that introduce bias and inefficiency. Here we apply a single-molecule approach to directly sequence chromatin immunoprecipitated DNA with minimal sample manipulation. This method is compatible with just 50 pg of DNA and should thus facilitate charting chromatin maps from limited cell populations.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Cromatina/genética , Análisis de Secuencia de ADN/métodos , Animales , Sesgo , Cromatina/metabolismo , Perfilación de la Expresión Génica , Genoma/genética , Humanos , Ratones , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...