Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 13(6)2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32423971

RESUMEN

The basal lamina is a specialized sheet of dense extracellular matrix (ECM) linked to the plasma membrane of specific cell types in their tissue context, which serves as a structural scaffold for organ genesis and maintenance. Disruption of the basal lamina and its functions is central to many disease processes, including cancer metastasis, kidney disease, eye disease, muscular dystrophies and specific types of brain malformation. The latter three pathologies occur in the α-dystroglycanopathies, which are caused by dysfunction of the ECM receptor α-dystroglycan. However, opportunities to study the basal lamina in various human disease tissues are restricted owing to its limited accessibility. Here, we report the generation of embryoid bodies from human induced pluripotent stem cells that model the basal lamina. Embryoid bodies cultured via this protocol mimic pre-gastrulation embryonic development, consisting of an epithelial core surrounded by a basal lamina and a peripheral layer of ECM-secreting endoderm. In α-dystroglycanopathy patient embryoid bodies, electron and fluorescence microscopy reveal ultrastructural basal lamina defects and reduced ECM accumulation. By starting from patient-derived cells, these results establish a method for the in vitro synthesis of patient-specific basal lamina and recapitulate disease-relevant ECM defects seen in the α-dystroglycanopathies. Finally, we apply this system to evaluate an experimental ribitol supplement therapy on genetically diverse α-dystroglycanopathy patient samples.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Membrana Basal/metabolismo , Cuerpos Embrioides/metabolismo , Matriz Extracelular/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Síndrome de Walker-Warburg/metabolismo , Membrana Basal/efectos de los fármacos , Membrana Basal/ultraestructura , Estudios de Casos y Controles , Técnicas de Cultivo de Célula , Células Cultivadas , Niño , Preescolar , Distroglicanos/genética , Distroglicanos/metabolismo , Cuerpos Embrioides/efectos de los fármacos , Cuerpos Embrioides/ultraestructura , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/ultraestructura , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/ultraestructura , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/ultraestructura , Recién Nacido , Masculino , Persona de Mediana Edad , Ribitol/farmacología , Síndrome de Walker-Warburg/tratamiento farmacológico , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/patología
2.
Neurology ; 93(21): e1932-e1943, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31653707

RESUMEN

OBJECTIVE: To identify the rate of change of clinical outcome measures in children with 2 types of congenital muscular dystrophy (CMD), COL6-related dystrophies (COL6-RDs) and LAMA2-related dystrophies (LAMA2-RDs). METHODS: Over the course of 4 years, 47 individuals (23 with COL6-RD and 24 with LAMA2-RD) 4 to 22 years of age were evaluated. Assessments included the Motor Function Measure 32 (MFM32), myometry (knee flexors and extensors, elbow flexors and extensors), goniometry (knee and elbow extension), pulmonary function tests, and quality-of-life measures. Separate linear mixed-effects models were fitted for each outcome measurement, with subject-specific random intercepts. RESULTS: Total MFM32 scores for COL6-RDs and LAMA2-RDs decreased at a rate of 4.01 and 2.60 points, respectively, each year (p < 0.01). All muscle groups except elbow flexors for individuals with COL6-RDs decreased in strength between 1.70% (p < 0.05) and 2.55% (p < 0.01). Range-of-motion measurements decreased by 3.21° (p < 0.05) at the left elbow each year in individuals with LAMA2-RDs and 2.35° (p < 0.01) in right knee extension each year in individuals with COL6-RDs. Pulmonary function demonstrated a yearly decline in sitting forced vital capacity percent predicted of 3.03% (p < 0.01) in individuals with COL6-RDs. There was no significant change in quality-of-life measures analyzed. CONCLUSION: Results of this study describe the rate of change of motor function as measured by the MFM32, muscle strength, range of motion, and pulmonary function in individuals with COL6-RDs and LAMA2-RDs.


Asunto(s)
Distrofias Musculares/fisiopatología , Esclerosis/fisiopatología , Adolescente , Artrometría Articular , Niño , Preescolar , Progresión de la Enfermedad , Nutrición Enteral , Femenino , Humanos , Modelos Lineales , Estudios Longitudinales , Masculino , Limitación de la Movilidad , Fuerza Muscular , Dinamómetro de Fuerza Muscular , Evaluación de Resultado en la Atención de Salud , Calidad de Vida , Pruebas de Función Respiratoria , Capacidad Vital , Adulto Joven
3.
JAMA Neurol ; 72(6): 689-98, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25938801

RESUMEN

IMPORTANCE: New genomic strategies can now be applied to identify a diagnosis in patients and families with previously undiagnosed rare genetic conditions. The large family evaluated in the present study was described in 1966 and now expands the phenotype of a known neuromuscular gene. OBJECTIVE: To determine the genetic cause of a slowly progressive, autosomal dominant, scapuloperoneal neuromuscular disorder by using linkage and exome sequencing. DESIGN, SETTING, AND PARTICIPANTS: Fourteen affected individuals in a 6-generation family with a progressive scapuloperoneal disorder were evaluated. Participants were examined at pediatric, neuromuscular, and research clinics from March 1, 2005, to May 31, 2014. Exome and linkage were performed in genetics laboratories of research institutions. MAIN OUTCOMES AND MEASURES: Examination and evaluation by magnetic resonance imaging, ultrasonography, electrodiagnostic studies, and muscle biopsies (n = 3). Genetic analysis included linkage analysis (n = 17) with exome sequencing (n = 7). RESULTS: Clinical findings included progressive muscle weakness in an initially scapuloperoneal and distal distribution, including wrist extensor weakness, finger and foot drop, scapular winging, mild facial weakness, Achilles tendon contractures, and diminished or absent deep tendon reflexes. Both age at onset and progression of the disease showed clinical variability within the family. Muscle biopsy specimens demonstrated type I fiber atrophy and trabeculated fibers without nemaline rods. Analysis of exome sequences within the linkage region (4.8 megabases) revealed missense mutation c.591C>A p.Glu197Asp in a highly conserved residue in exon 4 of ACTA1. The mutation cosegregated with disease in all tested individuals and was not present in unaffected individuals. CONCLUSIONS AND RELEVANCE: This family defines a new scapuloperoneal phenotype associated with an ACTA1 mutation. A highly conserved protein, ACTA1 is implicated in multiple muscle diseases, including nemaline myopathy, actin aggregate myopathy, fiber-type disproportion, and rod-core myopathy. To our knowledge, mutations in Glu197 have not been reported previously. This residue is highly conserved and located in an exposed position in the protein; the mutation affects the intermolecular and intramolecular electrostatic interactions as shown by structural modeling. The mutation in this residue does not appear to lead to rod formation or actin accumulation in vitro or in vivo, suggesting a different molecular mechanism from that of other ACTA1 diseases.


Asunto(s)
Actinas/genética , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/fisiopatología , Adulto , Edad de Inicio , Niño , Progresión de la Enfermedad , Exoma/genética , Ligamiento Genético , Humanos , Masculino , Distrofia Muscular de Emery-Dreifuss/patología , Mutación Missense/genética , Miopatías Nemalínicas , Linaje , Fenotipo
4.
Neurobiol Dis ; 70: 12-20, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24925468

RESUMEN

Spinal and bulbar muscular atrophy (SBMA, Kennedy's disease) is a motor neuron disease caused by polyglutamine repeat expansion in the androgen receptor. Although degeneration occurs in the spinal cord and muscle, the exact mechanism is not clear. Induced pluripotent stem cells from spinal and bulbar muscular atrophy patients provide a useful model for understanding the disease mechanism and designing effective therapy. Stem cells were generated from six patients and compared to control lines from three healthy individuals. Motor neurons from four patients were differentiated from stem cells and characterized to understand disease-relevant phenotypes. Stem cells created from patient fibroblasts express less androgen receptor than control cells, but show androgen-dependent stabilization and nuclear translocation. The expanded repeat in several stem cell clones was unstable, with either expansion or contraction. Patient stem cell clones produced a similar number of motor neurons compared to controls, with or without androgen treatment. The stem cell-derived motor neurons had immunoreactivity for HB9, Isl1, ChAT, and SMI-32, and those with the largest repeat expansions were found to have increased acetylated α-tubulin and reduced HDAC6. Reduced HDAC6 was also found in motor neuron cultures from two other patients with shorter repeats. Evaluation of stably transfected mouse cells and SBMA spinal cord showed similar changes in acetylated α-tubulin and HDAC6. Perinuclear lysosomal enrichment, an HDAC6 dependent process, was disrupted in motor neurons from two patients with the longest repeats. SBMA stem cells present new insights into the disease, and the observations of reduced androgen receptor levels, repeat instability, and reduced HDAC6 provide avenues for further investigation of the disease mechanism and development of effective therapy.


Asunto(s)
Atrofia Bulboespinal Ligada al X/fisiopatología , Células Madre Pluripotentes Inducidas/fisiología , Neuronas Motoras/fisiología , Acetilación , Adulto , Anciano , Atrofia Bulboespinal Ligada al X/genética , Células Cultivadas , Expansión de las Repeticiones de ADN , Femenino , Fibroblastos/fisiología , Histona Desacetilasa 6 , Histona Desacetilasas/deficiencia , Humanos , Masculino , Persona de Mediana Edad , Neurogénesis/fisiología , Receptores Androgénicos/metabolismo , Tubulina (Proteína)/metabolismo , Adulto Joven
5.
J Neuropathol Exp Neurol ; 73(5): 425-41, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24709677

RESUMEN

Dystroglycanopathies are a subtype of congenital muscular dystrophy of varying severity that can affect the brain and eyes, ranging from Walker-Warburg syndrome with severe brain malformation to milder congenital muscular dystrophy presentations with affected or normal cognition and later onset. Mutations in dystroglycanopathy genes affect a specific glycoepitope on α-dystroglycan; of the 14 genes implicated to date, LARGE encodes the glycosyltransferase that adds the final xylose and glucuronic acid, allowing α-dystroglycan to bind ligands, including laminin 211 and neurexin. Only 11 patients with LARGE mutations have been reported. We report the clinical, neuroimaging, and genetic features of 4 additional patients. We confirm that gross deletions and rearrangements are important mutational mechanisms for LARGE. The brain abnormalities overshadowed the initially mild muscle phenotype in all 4 patients. We present the first comprehensive postnatal neuropathology of the brain, spinal cord, and eyes of a patient with a homozygous LARGE mutation at Cys443. In this patient, polymicrogyria was the predominant cortical malformation; densely festooned polymicrogyria were overlaid by a continuous agyric surface. In view of the severity of these abnormalities, Cys443 may be a functionally important residue in the LARGE protein, whereas the mutation p.Glu509Lys of Patient 1 in this study may confer a milder phenotype. Overall, these results expand the clinical and genetic spectrum of dystroglycanopathy.


Asunto(s)
Distroglicanos/genética , Distrofias Musculares/genética , Distrofias Musculares/patología , Mutación/genética , N-Acetilglucosaminiltransferasas/genética , Niño , Preescolar , Resultado Fatal , Femenino , Homocigoto , Humanos , Lactante , Masculino , Distrofias Musculares/diagnóstico , Linaje , Polimorfismo de Nucleótido Simple/genética
6.
Ann Neurol ; 75(4): 525-32, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24515897

RESUMEN

OBJECTIVE: Spinal muscular atrophy (SMA) is one of the most common severe hereditary diseases of infancy and early childhood in North America, Europe, and Asia. SMA is usually caused by deletions of the survival motor neuron 1 (SMN1) gene. A closely related gene, SMN2, modifies the disease severity. SMA carriers have only 1 copy of SMN1 and are relatively common (1 in 30-50) in populations of European and Asian descent. SMN copy numbers and SMA carrier frequencies have not been reliably estimated in Malians and other sub-Saharan Africans. METHODS: We used a quantitative polymerase chain reaction assay to determine SMN1 and SMN2 copy numbers in 628 Malians, 120 Nigerians, and 120 Kenyans. We also explored possible mechanisms for SMN1 and SMN2 copy number differences in Malians, and investigated their effects on SMN mRNA and protein levels. RESULTS: The SMA carrier frequency in Malians is 1 in 209, lower than in Eurasians. Malians and other sub-Saharan Africans are more likely to have ≥3 copies of SMN1 than Eurasians, and more likely to lack SMN2 than Europeans. There was no evidence of gene conversion, gene locus duplication, or natural selection from malaria resistance to account for the higher SMN1 copy numbers in Malians. High SMN1 copy numbers were not associated with increased SMN mRNA or protein levels in human cell lines. INTERPRETATION: SMA carrier frequencies are much lower in sub-Saharan Africans than in Eurasians. This finding is important to consider in SMA genetic counseling in individuals with black African ancestry.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Atrofia Muscular Espinal/epidemiología , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , África del Sur del Sahara/epidemiología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , ARN Mensajero/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética
7.
Neurology ; 82(10): 873-8, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24500646

RESUMEN

OBJECTIVE: To identify the genetic cause of axonal hereditary motor and sensory neuropathy (HMSN2) with infrequent giant axons. METHODS: We studied 11 members of a previously described HMSN2 family with infrequent giant axons and variable cardiomyopathy. Whole-exome sequencing (WES) was performed on 2 affected persons and 1 unaffected person. Sanger sequencing was utilized to confirm the identified novel variant tracking with the affected status. Linkage analysis and haplotype mapping were obtained to confirm the causal nature of the identified variant. Cotransfection of HEK293 cells and co-immunoprecipitation assay were performed to assess the impact of the identified mutant protein in the implicated ubiquitin ligase pathway. RESULTS: Giant axons with neurofilament accumulations were found in 3 affected persons who had undergone nerve biopsy evaluations. Six novel variants were identified by WES, but only DCAF8 p.R317C tracked with affected status within the family. Linkage and haplotype analysis using microsatellite markers supported this variant as causal. The mutation is within the DCAF8 WD repeat region critical for its binding to DDB1. Functional analysis shows DCAF8 p.R317C reduces the association of DCAF8 and DDB1, which is important in Cul4-ubiquitin E3 function. CONCLUSIONS: Our results indicate that DCAF8 p.R317C mutation is responsible for this specific variety of HMSN2 with infrequent giant axons and mild cardiomyopathy. This mutation results in decreased DDB1-DCAF8 association, leading to an E3 ubiquitin ligase defect that is likely associated with neurofilament degradation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Axones/patología , Enfermedad de Charcot-Marie-Tooth/genética , Unión Proteica/genética , Ubiquitina-Proteína Ligasas/genética , Adulto , Anciano , Axones/metabolismo , Biomarcadores/metabolismo , Cardiomiopatías/genética , Proteínas Portadoras , Proteínas Cullin , Proteínas de Unión al ADN , Exoma , Ligamiento Genético , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje , Proteínas Serina-Treonina Quinasas
8.
Neurology ; 80(17): 1584-9, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23553484

RESUMEN

OBJECTIVE: To report a series of 11 patients on the severe end of the spectrum of ryanodine receptor 1 (RYR1) gene-related myopathy, in order to expand the clinical, histologic, and genetic heterogeneity associated with this group of patients. METHODS: Eleven patients evaluated in the neonatal period with severe neonatal-onset RYR1-associated myopathy confirmed by genetic testing were ascertained. Clinical features, molecular testing results, muscle imaging, and muscle histology are reviewed. RESULTS: Clinical features associated with the severe neonatal presentation of RYR1-associated myopathy included decreased fetal movement, hypotonia, poor feeding, respiratory involvement, arthrogryposis, and ophthalmoplegia in 3 patients, and femur fractures or hip dislocation at birth. Four patients had dominant RYR1 mutations, and 7 had recessive RYR1 mutations. One patient had a cleft palate, and another a congenital rigid spine phenotype-findings not previously described in the literature in patients with early-onset RYR1 mutations. Six patients who underwent muscle ultrasound showed relative sparing of the rectus femoris muscle. Histologically, all patients with dominant mutations had classic central cores on muscle biopsy. Patients with recessive mutations showed great histologic heterogeneity, including fibrosis, variation in fiber size, skewed fiber typing, very small fibers, and nuclear internalization with or without ill-defined cores. CONCLUSIONS: This series confirms and expands the clinical and histologic variability associated with severe congenital RYR1-associated myopathy. Both dominant and recessive mutations of the RYR1 gene can result in a severe neonatal-onset phenotype, but more clinical and histologic heterogeneity has been seen in those with recessive RYR1 gene mutations. Central cores are not obligatory histologic features in recessive RYR1 mutations. Sparing of the rectus femoris muscle on imaging should prompt evaluation for RYR1-associated myopathy in the appropriate clinical context.


Asunto(s)
Miopatía del Núcleo Central/genética , Miopatía del Núcleo Central/patología , Miopatía del Núcleo Central/fisiopatología , Canal Liberador de Calcio Receptor de Rianodina/genética , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Anomalías Múltiples/fisiopatología , Preescolar , Femenino , Historia Antigua , Humanos , Recién Nacido , Masculino , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...