Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 326(5953): 718-21, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19762596

RESUMEN

Eukaryotic cells require iron for survival and have developed regulatory mechanisms for maintaining appropriate intracellular iron concentrations. The degradation of iron regulatory protein 2 (IRP2) in iron-replete cells is a key event in this pathway, but the E3 ubiquitin ligase responsible for its proteolysis has remained elusive. We found that a SKP1-CUL1-FBXL5 ubiquitin ligase protein complex associates with and promotes the iron-dependent ubiquitination and degradation of IRP2. The F-box substrate adaptor protein FBXL5 was degraded upon iron and oxygen depletion in a process that required an iron-binding hemerythrin-like domain in its N terminus. Thus, iron homeostasis is regulated by a proteolytic pathway that couples IRP2 degradation to intracellular iron levels through the stability and activity of FBXL5.


Asunto(s)
Proteínas F-Box/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Hierro/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular , Proteínas Cullin/metabolismo , Hemeritrina/metabolismo , Homeostasis , Humanos , Proteína 1 Reguladora de Hierro/metabolismo , Oxígeno/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Complejos de Ubiquitina-Proteína Ligasa
2.
Mol Cell Biol ; 29(8): 2219-29, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19223469

RESUMEN

Iron regulatory protein 2 (IRP2) is an RNA-binding protein that regulates the posttranscriptional expression of proteins required for iron homeostasis such as ferritin and transferrin receptor 1. IRP2 RNA-binding activity is primarily regulated by iron-mediated proteasomal degradation, but studies have suggested that IRP2 RNA binding is also regulated by thiol oxidation. We generated a model of IRP2 bound to RNA and found that two cysteines (C512 and C516) are predicted to lie in the RNA-binding cleft. Site-directed mutagenesis and thiol modification show that, while IRP2 C512 and C516 do not directly interact with RNA, both cysteines are located within the RNA-binding cleft and must be unmodified/reduced for IRP2-RNA interactions. Oxidative stress induced by cellular glucose deprivation reduces the RNA-binding activity of IRP2 but not IRP2-C512S or IRP2-C516S, consistent with the formation of a disulfide bond between IRP2 C512 and C516 during oxidative stress. Decreased IRP2 RNA binding is correlated with reduced transferrin receptor 1 mRNA abundance. These studies provide insight into the structural basis for IRP2-RNA interactions and reveal an iron-independent mechanism for regulating iron homeostasis through the redox regulation of IRP2 cysteines.


Asunto(s)
Antígenos CD/genética , Cisteína/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores de Transferrina/genética , Animales , Sitios de Unión , Homeostasis , Humanos , Ratones , Oxidación-Reducción , Estrés Oxidativo , ARN Mensajero/análisis
3.
J Biol Chem ; 283(35): 23589-98, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18574241

RESUMEN

Iron regulatory protein 2 (IRP2) is a key iron sensor that post-transcriptionally regulates mammalian iron homeostasis by binding to iron-responsive elements (IREs) in mRNAs that encode proteins involved in iron metabolism (e.g. ferritin and transferrin receptor 1). During iron deficiency, IRP2 binds IREs to regulate mRNA translation or stability, whereas during iron sufficiency IRP2 is degraded by the proteasome. Here, we identify an iron-independent IRP2 phosphorylation site that is regulated by the cell cycle. IRP2 Ser-157 is phosphorylated by Cdk1/cyclin B1 during G(2)/M and is dephosphorylated during mitotic exit by the phosphatase Cdc14A. Ser-157 phosphorylation during G(2)/M reduces IRP2 RNA-binding activity and increases ferritin synthesis, whereas Ser-157 dephosphorylation during mitotic exit restores IRP2 RNA-binding activity and represses ferritin synthesis. These data show that reversible phosphorylation of IRP2 during G(2)/M has a role in modulating the iron-independent expression of ferritin and other IRE-containing mRNAs during the cell cycle.


Asunto(s)
División Celular/fisiología , Ferritinas/biosíntesis , Fase G2/fisiología , Proteína 2 Reguladora de Hierro/metabolismo , Biosíntesis de Proteínas/fisiología , Estabilidad del ARN/fisiología , Animales , Ferritinas/genética , Células HeLa , Homeostasis/fisiología , Humanos , Hierro/metabolismo , Deficiencias de Hierro , Proteína 2 Reguladora de Hierro/genética , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas
4.
Biochim Biophys Acta ; 1783(2): 246-52, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17822790

RESUMEN

Iron regulatory protein 2 (IRP2) binds to iron-responsive elements (IREs) to regulate the translation and stability of mRNAs encoding several proteins involved in mammalian iron homeostasis. Increases in cellular iron stimulate the polyubiquitylation and proteasomal degradation of IRP2. One study has suggested that haem-oxidized IRP2 ubiquitin ligase-1 (HOIL-1) binds to a unique 73-amino acid (aa) domain in IRP2 in an iron-dependent manner to regulate IRP2 polyubiquitylation and degradation. Other studies have questioned the role of the 73-aa domain in iron-dependent IRP2 degradation. We investigated the potential role of HOIL-1 in the iron-mediated degradation of IRP2 in human embryonic kidney 293 (HEK293) cells. We found that transiently expressed HOIL-1 and IRP2 interact via the 73-aa domain, but this interaction is not iron-dependent, nor does it enhance the rate of IRP2 degradation by iron. In addition, stable expression of HOIL-1 does not alter the iron-dependent degradation or RNA-binding activity of endogenous IRP2. Reduction of endogenous HOIL-1 by siRNA has no affect on the iron-mediated degradation of endogenous IRP2. These data demonstrate that HOIL-1 is not required for iron-dependent degradation of IRP2 in HEK293 cells, and suggest that a HOIL-1 independent mechanism is used for IRP2 degradation in most cell types.


Asunto(s)
Proteína 2 Reguladora de Hierro/metabolismo , Hierro/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Humanos , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Elementos de Respuesta , Factores de Transcripción , Ubiquitina-Proteína Ligasas/química
5.
Am J Physiol Regul Integr Comp Physiol ; 287(4): R894-901, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15178542

RESUMEN

Placental iron transport during the last trimester of pregnancy determines the iron endowment of the neonate. Iron transport is a function of the major iron transport proteins: transferrin receptor-1 (TfR-1) and ferroportin-1 (FPN-1). The mRNAs for TfR-1 and, potentially, FPN-1 are posttranscriptionally regulated by iron regulatory protein (IRP)-1 and IRP-2. We assessed the effect of gestational age and fetal iron status on IRP-1- and IRP-2-binding activity and on the localization and protein expression of TfR-1 and FPN-1 protein at 24-40 wk of gestation in 21 placentas obtained from iron-sufficient nonanemic mothers. Gestational age had no effect on cord serum ferritin concentration, IRP-2 RNA-binding activity, transporter protein location, and TfR-1 or FPN-1 protein expression. IRP-1 activity remained constant until full term, when it decreased (P = 0.01). Placental ferritin (r = 0.76, P < 0.001) and FPN-1 (r = 0.44, P < 0.05) expression increased with gestational age. Fetal iron status, as indexed by cord serum ferritin concentration, was inversely related to placental IRP-1 (r = -0.66, P < 0.001) and IRP-2 (r = -0.42, P = 0.05) activities. Placental ferritin protein expression correlated better with IRP-1 (r = -0.45, P = 0.04) than with IRP-2 (r = -0.35, P = 0.10) activity. Placental TfR-1 and FPN-1 protein expression was independent of fetal or placental iron status and IRP activities. Iron status had no effect on transport protein localization. We conclude that, toward the end of the third trimester of iron-sufficient human pregnancy, the placenta accumulates ferritin and potentially increases placental-fetal iron delivery through increased FPN-1 expression. IRP-1 may have a more dominant role than IRP-2 activity in regulating ferritin expression.


Asunto(s)
Proteínas Portadoras/biosíntesis , Feto/metabolismo , Edad Gestacional , Proteínas Reguladoras del Hierro/biosíntesis , Hierro/metabolismo , Placenta/metabolismo , Adulto , Antígenos CD , Western Blotting , Femenino , Ferritinas/metabolismo , Sangre Fetal/metabolismo , Humanos , Inmunohistoquímica , Estado Nutricional , Embarazo , Tercer Trimestre del Embarazo , Unión Proteica , Receptores de Transferrina/metabolismo
6.
J Biol Chem ; 278(5): 3227-34, 2003 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-12438312

RESUMEN

Iron regulatory protein-1 (IRP-1) is a cytosolic RNA-binding protein that is a regulator of iron homeostasis in mammalian cells. IRP-1 binds to RNA structures, known as iron-responsive elements, located in the untranslated regions of specific mRNAs, and it regulates the translation or stability of these mRNAs. Iron regulates IRP-1 activity by converting it from an RNA-binding apoprotein into a [4Fe-4S] cluster protein exhibiting aconitase activity. IRP-1 is widely found in prokaryotes and eukaryotes. Here, we report the biochemical characterization and regulation of an IRP-1 homolog in Caenorhabditis elegans (GEI-22/ACO-1). GEI-22/ACO-1 is expressed in the cytosol of cells of the hypodermis and the intestine. Like mammalian IRP-1/aconitases, GEI-22/ACO-1 exhibits aconitase activity and is post-translationally regulated by iron. Although GEI-22/ACO-1 shares striking resemblance to mammalian IRP-1, it fails to bind RNA. This is consistent with the lack of iron-responsive elements in the C. elegans ferritin genes, ftn-1 and ftn-2. While mammalian ferritin H and L mRNAs are translationally regulated by iron, the amounts of C. elegans ftn-1 and ftn-2 mRNAs are increased by iron and decreased by iron chelation. Excess iron did not significantly alter worm development but did shorten their life span. These studies indicated that iron homeostasis in C. elegans shares some similarities with those of vertebrates.


Asunto(s)
Aconitato Hidratasa/genética , Caenorhabditis elegans/genética , Deferoxamina/farmacología , Ferritinas/genética , Proteína 1 Reguladora de Hierro/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/fisiología , Línea Celular , Clonación Molecular , Secuencia Conservada , Citosol/enzimología , Cartilla de ADN , Regulación de la Expresión Génica , Genes de Helminto , Genes Reporteros , Humanos , Proteína 1 Reguladora de Hierro/química , Riñón , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...