Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(6)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38345116

RESUMEN

The dynamics of polymer nanocomposites varies depending on the physics and chemistry at the polymer-nanoparticle interface. The physical aging of the nanocomposites is accelerated or retarded based on interfacial interactions and the state of polymer adsorption at the interfaces. In this study, we investigated the aging kinetics of silica-polystyrene nanocomposites using differential scanning calorimetry, focusing on the effect of local conformations of chains adsorbed on the nanofiller surface. The results show that the temperature dependence of the aging rate follows a Vogel-Fulcher-Tammann relationship at high temperatures, whereas it exhibits an Arrhenius-like behavior below a characteristic temperature (Tc). Notably, at T < Tc, the aging rate decreases with increasing loop height of the chains adsorbed on the filler surface, but the activation energy remains unchanged. We proposed that the suppression of the aging rate at T < Tc is likely related to an increase in the length scale over which the slow interfacial dynamics can propagate due to the increased topological interactions between the chain loops of a larger size and the free chains in the matrix. The increased packing frustration occurring at the filler surface occupied by the larger loops might also contribute to the decreased aging rate.

2.
J Phys Chem Lett ; 15(2): 357-363, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38175163

RESUMEN

Polymer glasses attain thermodynamic equilibrium owing to structural relaxation at various length scales. Herein, calorimetry experiments were conducted to trace the macroscopic relaxation of slow-cooled (SC) and hyperquenched (HQ) polystyrene (PS) glasses and based on detailed comparisons with molecular dynamics probed by dye reorientation, we discussed the possible molecular process governing the equilibration of PS glasses near the glass transition temperatures (Tg). Both SC and HQ glasses equilibrate owing to the cooperative segment motion above a characteristic temperature (Tc) slightly lower than the Tg. In contrast, below the Tc, the localized backbone motion with an apparent activation energy of 290 ± 20 kJ/mol, involving approximately six repeating units, assists equilibrium recovery of PS glasses on the experimentally accessible time scales. The results possibly indicate the presence of an alternative mechanism other than the α-cooperative process controlling physical aging of materials in their deep glassy states.

3.
bioRxiv ; 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37503120

RESUMEN

Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that utilizes its type III secretion systems (T3SSs) to inject virulence factors into the host cell and colonize the host. In turn, a subset of cytosolic immune receptors respond to T3SS ligands by forming multimeric signaling complexes called inflammasomes, which activate caspases that induce interleukin-1 (IL-1) family cytokine release and an inflammatory form of cell death called pyroptosis. Human macrophages mount a multifaceted inflammasome response to Salmonella infection that ultimately restricts intracellular bacterial replication. However, how inflammasomes restrict Salmonella replication remains unknown. We find that caspase-1 is essential for mediating inflammasome responses to Salmonella and subsequent restriction of bacterial replication within human macrophages, with caspase-4 contributing as well. We also demonstrate that the downstream pore-forming protein gasdermin D (GSDMD) and ninjurin-1 (NINJ1), a mediator of terminal cell lysis, play a role in controlling Salmonella replication in human macrophages. Notably, in the absence of inflammasome responses, we observed hyperreplication of Salmonella within the cytosol of infected cells, and we also observed increased bacterial replication within vacuoles, suggesting that inflammasomes control Salmonella replication primarily within the cytosol and also within vacuoles. These findings reveal that inflammatory caspases and pyroptotic factors mediate inflammasome responses that restrict the subcellular localization of intracellular Salmonella replication within human macrophages.

4.
Eur J Pharmacol ; 953: 175825, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37269973

RESUMEN

Polycystic ovary syndrome (PCOS) is characterized by reproductive, endocrine, and metabolic disorders. Icariin has been shown to regulate endocrine and metabolic imbalances. This study aimed to determine the therapeutic effect and pharmacological mechanism of icariin in PCOS rats. Rats were fed a high-fat diet and gavaged with letrozole to induce PCOS. Thirty-six female rats were randomly divided into four groups: control, model, low-dose, and high-dose icariin. After 30 days of treatment, we evaluated the therapeutic effects on weight and diet, sex hormone levels, ovarian morphology, estrous cycle, inflammatory factors, and indicators of glucolipid metabolism. Combined with the ovarian transcriptome, we verified the key markers of apoptosis and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway by RT-qPCR for mRNA level, western blot, and immunohistochemistry for protein expression. Icariin significantly improved ovarian function and reproductive endocrine disorders by regulating sex hormones, restoring the estrous cycle, and reducing ovarian morphological damage in PCOS rats. Icariin-treated rats had lower weight gain and reduced triglycerides, fasting insulin, HOMA-IR, TNF-α, and interleukin-6 with higher high-density lipoprotein cholesterol levels than PCOS rats. TUNEL staining showed icariin improved apoptosis in the ovaries. This was supported by an increase in Bcl2 and a decrease in Bad and Bax. Icariin decreased the ratios of p-JAK2/JAK2, p-STAT1/STAT1, p-STAT3/STAT3, and p-STAT5a/STAT5a, decreased IL-6, gp130 expression, and increased cytokine-inducible SH2-containing protein (CISH) and suppressor of cytokine signaling 1 (SOCS1) expression. The pharmacological mechanism may be related to the reduction in ovarian apoptosis and inhibition of the IL-6/gp130/JAK2/STATs pathway.


Asunto(s)
Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Humanos , Ratas , Femenino , Animales , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Letrozol/efectos adversos , Interleucina-6/efectos adversos , Dieta Alta en Grasa/efectos adversos , Receptor gp130 de Citocinas/uso terapéutico , Hormonas Esteroides Gonadales
5.
Drug Des Devel Ther ; 17: 1289-1302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138582

RESUMEN

Purpose: Our study aims to reveal the pharmacological mechanism of Astragaloside IV in the treatment of pulmonary fibrosis(PF) through network pharmacology and experimental validation. Methods: We first determined the in vivo anti-pulmonary fibrosis effect of Astragaloside IV by HE, MASSON staining, and lung coefficients, then used network pharmacology to predict the signaling pathways and molecularly docked key pathway proteins, and finally validated the results by in vivo and in vitro experiments. Results: In in vivo experiments, we found that Astragaloside IV improved body weight (P < 0.05), increased lung coefficients (P < 0.05), and reduced lung inflammation and collagen deposition in mice with pulmonary fibrosis. The network pharmacology results showed that Astragaloside IV had 104 cross-targets with idiopathic pulmonary fibrosis, and the results of KEGG enrichment analysis indicated that cellular senescence could be an important pathway for Astragaloside IV in the treatment of pulmonary fibrosis. Astragaloside IV also bound well to senescence-associated proteins, according to molecular docking results. The results of both in vivo and in vitro experiments showed that Astragaloside IV significantly inhibited senescence protein markers such as P53, P21, and P16 and delayed cellular senescence (P < 0.05). In in vivo experiments, we also found that Astragaloside IV reduced the production of SASPs (P < 0.05), and in in vitro experiments, Astragaloside IV also reduced the production of ROS. In addition, by detecting epithelial-mesenchymal transition(EMT)-related marker protein expression, we also found that Astragaloside IV significantly inhibited the development of EMT in both in vivo and in vitro experiments (P < 0.05). Conclusion: Our research found that Astragaloside IV could alleviate bleomycin-induced PF by preventing cellular senescence and EMT.


Asunto(s)
Bleomicina , Fibrosis Pulmonar Idiopática , Ratones , Animales , Simulación del Acoplamiento Molecular , Farmacología en Red , Transición Epitelial-Mesenquimal
6.
Front Pharmacol ; 13: 1033919, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386126

RESUMEN

Overview: In treating pulmonary fibrosis (PF), traditional Chinese medicine (TCM) has received much attention, but its mechanism is unclear. The pharmacological mechanisms of TCM can be explored through network pharmacology. However, due to its virtual screening properties, it still needs to be verified by in vitro or in vivo experiments. Therefore, we investigated the anti-PF mechanism of Yiqi Huayu Decoction (YHD) by combining network pharmacology with in vivo experiments. Methods: Firstly, we used classical bleomycin (BLM)-induced rat model of PF and administrated fibrotic rats with YHD (low-, medium-, and high-dose). We comprehensively assessed the treatment effect of YHD according to body weight, lung coefficient, lung function, and histopathologic examination. Second, we predict the potential targets by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) combined with network pharmacology. In brief, we obtained the chemical ingredients of YHD based on the UHPLC-MS/MS and TCMSP database. We collected drug targets from TCMSP, HERB, and Swiss target prediction databases based on active ingredients. Disease targets were acquired from drug libraries, Genecards, HERB, and TTD databases. The intersecting targets of drugs and disease were screened out. The STRING database can obtain protein-protein interaction (PPI) networks and hub target proteins. Molecular Complex Detection (MCODE) clustering analysis combined with enrichment analysis can explore the possible biological mechanisms of YHD. Enrichment analyses were conducted through the R package and the David database, including the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Reactome. Then, we further validated the target genes and target proteins predicted by network pharmacology. Protein and gene expression detection by immunohistochemistry, Western blot (WB), and real-time quantitative PCR (rt-qPCR). Results: The results showed that high-dose YHD effectively attenuated BLM-induced lung injury and fibrosis in rats, as evidenced by improved lung function, relief of inflammatory response, and reduced collagen deposition. We screened nine core targets and cellular senescence pathways by UHPLC-MS/MS analysis and network pharmacology. We subsequently validated key targets of cellular senescence signaling pathways. WB and rt-qPCR indicated that high-dose YHD decreased protein and gene expression of senescence-related markers, including p53 (TP53), p21 (CDKN1A), and p16 (CDKN2A). Increased reactive oxygen species (ROS) are upstream triggers of the senescence program. The senescence-associated secretory phenotypes (SASPs), containing interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-ß1 (TGF-ß1), can further exacerbate the progression of senescence. High-dose YHD inhibited ROS production in lung tissue and consistently reduced the SASPs expression in serum. Conclusion: Our study suggests that YHD improves lung pathological injury and lung function in PF rats. This protective effect may be related to the ability of YHD to inhibit cellular senescence.

7.
Soft Matter ; 18(43): 8331-8341, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36300535

RESUMEN

Amorphous solid dispersions (ASDs) utilize the kinetic stability of the amorphous state to stabilize drug molecules within a glassy polymer matrix. Therefore, understanding the glassy-state stability of the polymer excipient is critical to ASD design and performance. Here, we investigated the physical aging of hydroxypropyl methylcellulose acetate succinate (HPMCAS), a commonly used polymer in ASD formulations. We found that HPMCAS exhibited conventional physical aging behavior when annealed near the glass transition temperature (Tg). In this scenario, structural recovery was facilitated by α-relaxation dynamics. However, when annealed well below Tg, a sub-α-relaxation process facilitated low-temperature physical aging in HPMCAS. Nevertheless, the physical aging rate exhibited no significant change up to 40 K below Tg, below which it exhibited a near monotonic decrease with decreasing temperature. Finally, infrared spectroscopy was employed to assess any effect of physical aging on the chemical structure of HPMCAS, which is known to be susceptible to degradation at temperatures 30 K above its Tg. Our results provide critical insights necessary to understand better the link between the stability of ASDs and physical aging of the glassy polymer matrix.


Asunto(s)
Excipientes , Metilcelulosa , Estabilidad de Medicamentos , Metilcelulosa/química , Excipientes/química , Polímeros/química , Solubilidad
8.
Artículo en Inglés | MEDLINE | ID: mdl-35911163

RESUMEN

Background: The composition and metabolic activities of gut microbiota are strongly interconnected with cardiac fibrosis (CF) and heart failure (HF). Qige Huxin formula (QHF), a traditional Chinese medicine (TCM) formulation originating from a classical Fangji Huangqi decoction, has been widely used to clinically treat HF for decades. However, it is still unclear whether QHF alleviates CF by modulating gut microbiota and intestinal integrity. Purpose: This study aimed to investigate the cardioprotective effects of QHF in isoprenaline-induced CF through modulating gut microbiota and intestinal integrity. Methods: Fifty mice were randomly divided into five groups after one week of acclimatization feeding: control group, model group, 2.56 g/kg/d group (low-dose QHF), 5.12 g/kg/d group (high-dose QHF), and meto group (15 mg/kg/d). The CF model was established by subcutaneously injecting the mice with isoprenaline (10 mg/kg/d for 14 days), followed by QHF treatment. The heart volume, cardiac weight index (CWI), serum myocardial enzymes, serum inflammatory cytokines, serum lipopolysaccharide, histopathology of the heart and colon tissues, ZO-1, and occludin of colon tissues were then measured. Fecal samples from mice were analyzed using 16S rRNA sequencing. Results: QHF treatment significantly reduced heart volume, CWI, and serum CK and CK-MB levels, attenuated cardiac histopathological alterations, and alleviated CF. QHF treatment also downregulated TNF-α, IL-1ß, and IL-6 in serum. Moreover, QHF treatment decreased the serum level of lipopolysaccharide and maintained intestinal integrity by upregulating ZO-1 and occludin. The 16S rRNA microbiota analysis revealed that QHF treatment increased the relative abundance of Marvinbryantia and Phascolarctobacterium. Conclusions: QHF treatment exerts cardioprotective effects through modulating gut microbiota, protecting intestinal integrity, and alleviating inflammation. This study shows that gut microbiota may enhance heart-gut interaction.

9.
ACS Macro Lett ; 11(8): 1041-1048, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35920565

RESUMEN

Dry polymer brushes have attracted great attention because of their potential utility in regulating interface properties. However, it is still unknown whether dry polymer brushes will exhibit degrafting behavior as a result of thermal annealing. Herein, a study of the conformational entropy effect on thermal degrafting of dry polystyrene (PS) brushes is presented. For PS brushes with an initial grafting density (σpini) of 0.61 nm-2, degrafting behavior was observed at 393 K, and the equilibrium σp was approximately 0.14 nm-2 at 413 K. However, for brushes with σpini ≤ 0.14 nm-2, thermal degrafting was not observed even if the temperature was increased to 453 K. Furthermore, we found that the degrafting rate was faster for PS brushes with higher σpini and higher molecular weights when σpini > 0.14 nm-2. Our findings confirmed that degrafting is a mechanochemical activation process driven by tension imposed on bonds that anchor the chains to the surface, and the process is amplified by conformational entropy.


Asunto(s)
Polímeros , Poliestirenos , Entropía , Conformación Molecular , Polímeros/química , Poliestirenos/química , Propiedades de Superficie
10.
Front Cell Infect Microbiol ; 12: 836150, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656031

RESUMEN

Aim: Gut microbiota is of crucial importance to cardiac health. Astragaloside IV (AS-IV) is a main active ingredient of Huangqi, a traditional edible and medicinal herb that has been shown to have beneficial effects on cardiac fibrosis (CF). However, it is still uncertain whether the consumption of AS-IV alleviates cardiac fibrosis through the gut microbiota and its metabolites. Therefore, we assessed whether the anti-fibrosis effect of AS-IV is associated with changes in intestinal microbiota and fecal metabolites and if so, whether some specific gut microbes are conducive to the benefits of AS-IV. Methods: Male C57BL-6J mice were subcutaneously injected with isoprenaline (ISO) to induce cardiac fibrosis. AS-IV was administered to mice by gavage for 14 days. The effects of AS-IV on cardiac function, myocardial enzyme, cardiac weight index (CWI), and histopathology of ISO-induced CF mice were investigated. Moreover, 16S rRNA sequencing was used to establish gut-microbiota profiles. Fecal-metabolites profiles were established using the liquid chromatograph-mass spectrometry (LC-MS). Results: AS-IV treatment prevented cardiac dysfunction, ameliorated myocardial damage, histopathological changes, and cardiac fibrosis induced by ISO. AS-IV consumption increased the richness of Akkermansia, Defluviitaleaceae_UCG-011, and Rikenella. AS-IV also modulated gut metabolites in their feces. Among 141 altered gut metabolites, amino acid production was sharply changed. Furthermore, noticeable correlations were found between several specific gut microbes and altered fecal metabolites. Conclusions: An increase of Akkermansia, Defluviitaleaceae_UCG-011, and Rikenella abundance, and modulation of amino acid metabolism, may contribute to the anti-fibrosis and cardiac protective effects of Astragaloside IV.


Asunto(s)
Microbioma Gastrointestinal , Akkermansia , Aminoácidos/farmacología , Animales , Bacteroidetes/genética , Heces/química , Fibrosis , Isoproterenol/análisis , Isoproterenol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S/genética , Saponinas , Triterpenos
11.
Front Pharmacol ; 12: 708636, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603023

RESUMEN

Background: The outbreak of coronavirus disease 2019 (COVID-19) has rapidly spread to become a global emergency since December 2019. Chinese herbal medicine plays an important role in the treatment of COVID-19. Chinese herbal medicine honeysuckle is an extremely used traditional edible and medicinal herb. Many trials suggest that honeysuckle has obtained a good curative effect for COVID-19; however, no systematic evaluation on the clinical efficacy of honeysuckle in the treatment of COVID-19 is reported. This study aimed to evaluate the efficacy and safety of Chinese herbal medicine honeysuckle in the treatment of COVID-19. Methods: Seven electronic databases (PubMed, EMBASE, Cochrane Library, China National Knowledge Infrastructure, China Science and Technology Journal Database, Wanfang Database, and China Biology Medicine) were searched to identify randomized controlled trials (RCTs) of honeysuckle for adult patients (aged ≥ 18 years) with COVID-19. The Cochrane Risk of Bias Tool was applied to assess the methodological quality of trials. Review Manager 5.3 software was used for data analysis. Results: Overall, nine RCTs involving 1,286 patients were enrolled. Our meta-analyses found that combination therapy of honeysuckle and conventional therapy was more effective than conventional therapy alone in lung computed tomography (CT) [relative risk (RR) = 1.24, 95% confidence interval (95%CI) (1.12, 1.37), P < 0.0001], clinical cure rate [RR = 1.21, 95%CI (1.12, 1.31), P < 0.00001], and rate of conversion to severe cases [RR = 0.50, 95%CI (0.33, 0.76), P = 0.001]. Besides, combination therapy can improve the symptom score of fever, cough reduction rate, symptom score of cough, and inflammatory biomarkers (white blood cell (WBC) count; C-reactive protein (CRP)) (P < 0.05). Conclusion: Honeysuckle combined with conventional therapy may be beneficial for the treatment of COVID-19 in improving lung CT, clinical cure rate, clinical symptoms, and laboratory indicators and reducing the rate of conversion to severe cases. Besides, combination therapy did not increase adverse drug events. More high-quality RCTs are needed in the future.

12.
Nature ; 596(7872): 372-376, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34408328

RESUMEN

Many emerging materials, such as ultrastable glasses1,2 of interest for phone displays and OLED television screens, owe their properties to a gradient of enhanced mobility at the surface of glass-forming liquids. The discovery of this surface mobility enhancement3-5 has reshaped our understanding of the behaviour of glass formers and of how to fashion them into improved materials. In polymeric glasses, these interfacial modifications are complicated by the existence of a second length scale-the size of the polymer chain-as well as the length scale of the interfacial mobility gradient6-9. Here we present simulations, theory and time-resolved surface nano-creep experiments to reveal that this two-scale nature of glassy polymer surfaces drives the emergence of a transient rubbery, entangled-like surface behaviour even in polymers comprised of short, subentangled chains. We find that this effect emerges from superposed gradients in segmental dynamics and chain conformational statistics. The lifetime of this rubbery behaviour, which will have broad implications in constraining surface relaxations central to applications including tribology, adhesion, and surface healing of polymeric glasses, extends as the material is cooled. The surface layers suffer a general breakdown in time-temperature superposition (TTS), a fundamental tenet of polymer physics and rheology. This finding may require a reevaluation of strategies for the prediction of long-time properties in polymeric glasses with high interfacial areas. We expect that this interfacial transient elastomer effect and TTS breakdown should normally occur in macromolecular systems ranging from nanocomposites to thin films, where interfaces dominate material properties5,10.

13.
PLoS One ; 16(8): e0256429, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34415962

RESUMEN

INTRODUCTION: Coronavirus disease 2019 (COVID-19) has emerged as a global pandemic since its outbreak in Wuhan, China. It is an urgent task to prevent and treat COVID-19 effectively early. In China's experience combating the COVID-19 pandemic, Chinese herbal medicine (CHM) has played an indispensable role. A large number of epidemiological investigations have shown that mild to moderate COVID-19 accounts for the largest proportion of cases. It is of great importance to treat such COVID-19 cases, which can help control epidemic progression. Many trials have shown that CHM combined with conventional therapy in the treatment of mild to moderate COVID-19 was superior to conventional therapy alone. This review was designed to evaluate the add-on effect of CHM in the treatment of mild to moderate COVID-19. METHODS: Eight electronic databases including PubMed, EMBASE, Cochrane Central Register of Controlled Trials, the Clinical Trials.gov website, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (VIP), Wanfang Database and China Biology Medicine (CBM) were searched from December 2019 to March 2021 without language restrictions. Two reviewers searched and selected studies, and extracted data according to inclusion and exclusion criteria independently. Cochrane Risk of Bias (ROB) tool was used to assess the methodological quality of the included RCTs. Review Manager 5.3.0 software was used for statistical analysis. RESULTS: Twelve eligible RCTs including 1393 participants were included in this meta-analysis. Our meta-analyses found that lung CT parameters [RR = 1.26, 95% CI (1.15, 1.38), P<0.00001] and the clinical cure rate [RR = 1.26, 95%CI (1.16, 1.38), P<0.00001] of CHM combined with conventional therapy in the treatment of mild to moderate COVID-19 were better than those of conventional therapy. The rate of conversion to severe cases [RR = 0.48, 95%CI (0.32, 0.73), P = 0.0005], TCM symptom score of fever [MD = -0.62, 95%CI (-0.79, -0.45), P<0.00001], cough cases [RR = 1.43, 95%CI (1.16, 1.75), P = 0.0006], TCM symptom score of cough[MD = -1.07, 95%CI (-1.29, -0.85), P<0.00001], TCM symptom score of fatigue[MD = -0.66, 95%CI (-1.05, -0.28), P = 0.0007], and CRP[MD = -5.46, 95%CI (-8.19, -2.72), P<0.0001] of combination therapy was significantly lower than that of conventional therapy. The WBC count was significantly higher than that of conventional therapy[MD = 0.38, 95%CI (0.31, 0.44), P<0.00001]. Our meta-analysis results were robust through sensitivity analysis. CONCLUSION: Chinese herbal medicine combined with conventional therapy may be effective and safe in the treatment of mild to moderate COVID-19. More high-quality RCTs are needed in the future.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos/efectos adversos , Medicamentos Herbarios Chinos/uso terapéutico , COVID-19/diagnóstico por imagen , COVID-19/etiología , Tos/tratamiento farmacológico , Tos/virología , Diarrea/inducido químicamente , Medicamentos Herbarios Chinos/química , Fiebre/tratamiento farmacológico , Fiebre/virología , Humanos , Pulmón/diagnóstico por imagen , Pulmón/virología , Náusea/inducido químicamente , Tomografía Computarizada por Rayos X , Resultado del Tratamiento , Vómitos/inducido químicamente
14.
ACS Nano ; 15(6): 9568-9576, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34032418

RESUMEN

Glassy polymer films with extreme stability could enable major advancements in a range of fields that require the use of polymers in confined environments. Yet, from a materials design perspective, we now know that the glass transition temperature (Tg) and thermal expansion of polymer thin films can be dramatically different from those characteristics of the bulk, i.e., exhibiting confinement-induced diminished thermal stability. Here, we demonstrate that polymer brushes with an ultrahigh grafting density, i.e., an ultradense brush morphology, exhibit a significant enhancement in thermal stability, as manifested by an exceptionally high Tg and low expansivity. For instance, a 5 nm thick polystyrene brush film exhibits an ∼75 K increase in Tg and ∼90% reduction in expansivity compared to a spin-cast film of similar thickness. Our results establish how morphology can overcome confinement and interfacial effects in controlling thin-film material properties and how this can be achieved by the dense packing and molecular ordering in the amorphous state of ultradense brushes prepared by surface-initiated atom transfer radical polymerization in combination with a self-assembled monolayer of initiators.

15.
J Colloid Interface Sci ; 597: 289-296, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33872885

RESUMEN

Low energy density is the major obstacle for the practical all-solid-state supercapacitors, which may be raised by the combination of the pseudocapacitance with the electrochemical double-layer capacitance. Although graphene and polyaniline have been demonstrated two effective materials, the synthetic route of graphene and their hybrid mode largely dictated the capacitive performances and cyclability of graphene/polyaniline nanocomposites. Herein, we employed commercial graphite fluoride as the precursor to obtain graphene with a well-preserved carbon lattice. After graphite fluoride functionalization by p-phenylenediamine (pPDA) and in situ oxidative polymerization of anilines, polyaniline (PANI) chains were covalently attached to graphene framework through pPDA bridges. Multiple characterizations were performed to confirm the covalent binding mode between graphene scaffolds and PANI partners, and electrochemical tests unraveled the as-prepared G-pPDA-PANI triads delivered a gravimetric capacitance as high as 638F g-1 and a further amplified volumetric capacitance (up to 759F cm-3). The bendable all-solid-state supercapacitors yielded an encouraging energy density of over 18 W   h L-1 at a power density high to 5,950 W L-1, while exhibiting an exceptional rate capability, cycling stability and mechanical flexibility.

16.
ACS Macro Lett ; 10(1): 1-8, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35548993

RESUMEN

The film thickness and substrate interface are the two most common parameters to tune the dynamics of supported thin films. Here, we investigated the glass transition temperature (Tg) and thermal expansion of thin poly(methyl methacrylate) (PMMA) films with various thicknesses and different interfacial effects. We showed that, although the Tg of the thin films can be modulated equivalently by the two factors, their ability to change the expansivity (ß) is quite different; that is, ß increases notably with a reduction in the thickness, while it is insensitive to perturbations at the interface. We attribute the deviation in modulating ß by the thickness and the interfacial effect to the disparate abilities to change the free volume content in the film by a free surface and substrate interface. This leads to a situation where thin films with dissimilar thicknesses and interfacial properties can have the same Tg but very different ß values, suggesting that Tg alone cannot unequivocally quantify thin film dynamics.


Asunto(s)
Vidrio , Polímeros , Vidrio/química , Polímeros/química , Temperatura , Temperatura de Transición
17.
J Phys Chem Lett ; 11(18): 7814-7818, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32864965

RESUMEN

Intermolecular crowding of densely tethered polymers promotes chain extension and anisotropy that induces many unique properties. In this study, we used conformation-sensitive infrared spectroscopy to determine that chain extension in a polymer brush is associated with local conformation rearrangements, i.e., contraction of side groups and increased proportion of gauche twists in the backbone, which served to increase molecular disorder at or below the segmental scale. This conformational transition points to a particular molecular mechanism for chain extension in densely tethered polymers, wherein increased local disorder facilitates global chain ordering (i.e., chain extension) and therefore supplements our current understanding of chain orientation at a molecular level.

18.
Macromol Rapid Commun ; 41(6): e1900582, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32037634

RESUMEN

Annealing a supported polymer film in the melt state results in the growth of an irreversibly adsorbed layer, which has been shown to influence thin film properties such as diffusion and glass transition temperature. Adsorbed layer growth is attributed to many simultaneous interactions between individual monomer units and the substrate, stabilizing chains against desorption. In this study, adsorbed layers of polystyrene (PS), poly(methyl methacrylate) (PMMA), and their random copolymers are isolated by select solvents. While PS adsorbed layer thickness is largely unaffected by the choice of washing solvent, the PMMA adsorbed layer completely desorbs when washed with tetrahydrofuran and chloroform, as opposed to toluene. Scaling relationships between adsorbed layer thickness and degree of chain adsorption at the substrate enable the use of adsorbed layer thickness to probe specific polymer-substrate interactions. Composition-dependent desorption trends indicate non-preferential adsorption between styrene and methyl methacrylate repeat units at the substrate, despite differences in substrate interaction strength. This insight contributes to the developing mechanism for the adsorption of random copolymers during melt-state annealing, further extending the ability to predict processing-inducted changes to the properties of polymer thin films to heterogeneous systems.


Asunto(s)
Polímeros/química , Polimetil Metacrilato/química , Poliestirenos/química , Solventes/química , Adsorción , Cloroformo/química , Furanos/química , Polímeros/síntesis química , Solubilidad , Propiedades de Superficie , Temperatura , Tolueno/química
19.
J Chem Phys ; 152(6): 064904, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32061204

RESUMEN

A method based on the PeakForce QNM atomic force microscopic (AFM) adhesion measurement is employed to investigate the glassy dynamics of polystyrene (PS) single-chain particles end-grafted to SiO2-Si substrates with different diameters, D0, of 3.4 nm-8.8 nm and molar masses, Mn, of 8-123 kg/mol. As temperature was increased, the adhesion force, Fad, experienced by the AFM tip on pulling off the single chains after loading demonstrated a stepwise increase at an elevated temperature, which we identified to be Tg based on previous works. Our result shows that Tg of our grafted single chains increases with Mn in a manner consistent with the Fox-Flory equation, but the coefficient quantifying the Mn dependence of Tg is only (36 ± 6)% the value of bulk PS. In addition, the value of Tg in the Mn → ∞ limit is about 25 °C below the bulk Tg but more than 15 °C above that of (untethered) PS nanoparticles with D0 ≈ 100 nm suspended in a solution. Our findings are consistent with Tg of our single chains being dominated by simultaneous effects of the interfaces, which depress Tg, and end-grafting, which enhances Tg. The latter is believed to exert its influence on the glass transition dynamics by a mechanism reliant on chain connectivity and does not vary with chain length.

20.
Langmuir ; 35(46): 14890-14895, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31646872

RESUMEN

A high-density poly(methyl methacrylate) (PMMA) brush (σ = 0.77 chain/nm2) with a lower molecular weight distribution was prepared onto a silicon wafer by surface-initiated atom transfer radical polymerization. The surface of the PMMA brush chains was characterized upon the process of the environmental change, from air to water, using contact angle measurements in conjunction with sum-frequency generation spectroscopy. The surface structure and properties altered less with the changing environment from air to water for the PMMA brush than for a spin-coated film; that is, the extent of surface reorganization could be suppressed by grafting densely-packed chains onto a substrate. Also, the water penetration into the brush surface was inhibited because of the densely packed chain structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...