Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(8): e70055, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39157670

RESUMEN

Soil fungi participate in various ecosystem processes and are important factors driving the restoration of degraded forests. However, little is known about the changes in fungal diversity and potential functions under the development of different vegetation types during natural (secondary forest succession) and anthropogenic (reforestation) forest restoration. In this study, we selected typical forest succession sequences (including Pinus densiflora Siebold & Zucc., pine-broadleaf mixed forest of P. densiflora and Quercus acutissima Carruth., and Q. acutissima), as well as natural secondary deciduous broadleaved mixed forests and planted forests of Robinia pseudoacacia on Kunyu Mountain for analysis. We used ITS rRNA gene sequencing to characterize fungal communities and used the FUNGuild database to predict fungal functional groups. The results showed that forest succession affected fungal ß-diversity, but not the α-diversity. There was a significant increase in Basidiomycota and a decrease in Ascomycota in the later successional stage, accompanied by an increase in the functional groups of ectomycorrhizal fungi (ECM). Conversely, planted forests exhibited decreased fungal α-diversity and altered community compositions, characterized by fewer Basidiomycota and more Ascomycota and Mucoromycota. Planted forests led to a decrease in the relative abundances of ECM and an increase in animal pathogens. The TK content was the major factor explaining the distinction in fungal communities among the three successional stages, whereas pH, AP, and NH4 + were the major factors explaining community variations between natural and planted forests. Changes in vegetation types significantly affected the diversity and functional groups of soil fungal communities during forest succession and reforestation, providing key insights for forest ecosystem management in temperate forests.

2.
Ecol Evol ; 13(10): e10593, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37818249

RESUMEN

The soil fungal community plays an important role in forest ecosystems and is crucially influenced by forest secondary succession. However, the driving factors of fungal community and function during temperate forest succession and their potential impact on succession processes remain poorly understood. In this study, we investigated the dynamics of the soil fungal community in three temperate forest secondary successional stages (shrublands, coniferous forests, and deciduous broad-leaved forests) using high-throughput DNA sequencing coupled with functional prediction via the FUNGuild database. We found that fungal community richness, α-diversity, and evenness decreased significantly during the succession process. Soil available phosphorus and nitrate nitrogen decreased significantly after initial succession occurred, and redundancy analysis showed that both were significant predictors of soil fungal community structure. Among functional groups, fungal saprotrophs and pathotrophs represented by plant pathogens were significantly enriched in the early-successional stage, while fungal symbiotrophs represented by ectomycorrhiza were significantly increased in the late-successional stage. The abundance of both saprotroph and pathotroph fungal guilds was positively correlated with soil nitrate nitrogen and available phosphorus content. Ectomycorrhizal fungi were negatively correlated with nitrate nitrogen and available phosphorus content and positively correlated with ammonium nitrogen content. These results indicate that the dynamics of fungal community and function reflected the changes in nitrogen and phosphorus availability caused by the secondary succession in temperate forests. The fungal plant pathogen accumulated in the early-successional stage and ectomycorrhizal fungi accumulated in the late-successional stage may have a potential role in promoting forest succession. These findings contribute to a better understanding of the response of soil fungal communities to secondary forest succession and highlight the importance of fungal communities during the successional process.

3.
Front Plant Sci ; 13: 990541, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186032

RESUMEN

Phragmites australis is highly adaptable with high competitive ability and is widely distributed in the coastal wetland of the Yellow River Delta. However, allelopathic effects of P. australis on the growth of neighboring plants, such as Suaeda salsa, are poorly understood. In this study, germination responses of S. salsa seeds collected from two different habitats (intertidal zone and inland brackish wetland) to the extracts from different part of P. australis were compared. Potential allelopathic effects on germination percentage, germination rate, radicle length, and seedling biomass were analyzed. The germination of S. salsa was effectively inhibited by P. australis extract. Extract organ, extract concentration, and salt concentration showed different effects, the inhibitory rates were highest with belowground extract of P. australis between the four different parts. Germination percentage and germination rate were significantly decreased by the interactive effect of salt stress and extract concentration in S. salsa from a brackish wetland but not in S. salsa from the intertidal zone. The impact of different extracts of P. australis on radicle length and seedling biomass of S. salsa showed significant but inconsistent variation. The response index results showed that the higher concentration of extract solution (50 g·L-1) of P. australis had stronger inhibitory effect on the seed germination and seedling growth of S. salsa while the belowground extract had the strongest negative effect. Our results indicated that allelopathy is an important ecological adaptation mechanism for P. australis to maintain a high interspecific competitive advantage in the species' natural habitat.

4.
Water Res ; 186: 116379, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32911268

RESUMEN

Submerged macrophyte restoration is the key stage in the reestablishment of an aquatic ecosystem. Previous studies have paid considerable attention to the effect of multiple environmental factors on submerged macrophytes. Meanwhile, few studies have been conducted regarding the spatial and seasonal characteristics of water and sediment properties and their long-term relationship with submerged macrophytes after the implementation of the submerged macrophytes restoration project. On a monthly basis, we monitored the spatial and seasonal variation in water parameters, sediment properties, and the submerged macrophyte characteristics of West Lake in Hangzhou from August 2013 to July 2019. From these measurements, we characterized the relationship between environmental factors and submerged macrophytes. Water nutrient concentrations continuously decreased with time, and the accumulation of sediment nutrients was accelerated as the submerged macrophyte communities developed on a long-term scale. The results indicated that the difference in water parameters was due to seasonal changes and land-use types in the watershed. The differences in the sediment properties were mainly attributed to seasonal changes and changes in the flow field. Redundancy analysis showed that the influence of water nutrients on the submerged macrophyte distribution was greater than that of sediment nutrients. The result also suggested that the developed root system, high stoichiometric homeostasis coefficients of P, and compensation ability of substantial leaf tissue may lead to a large distribution of Vallisneria natans in West Lake in Hangzhou. The correlation of water parameters and sediment properties with submerged macrophytes for a long time was very important as the restoration was achieved. To ensure the stability of the aquatic ecosystem after performing the submerged macrophyte restoration, a greater emphasis must be placed on reestablishing the entire ecosystem, including the restoration of aquatic animals and fish stocks. We expect these findings to serve as a reference for researchers and government agencies in the field of aquatic ecosystem restoration.


Asunto(s)
Ecosistema , Lagos , Animales , China , Estaciones del Año , Agua
5.
Mitochondrial DNA A DNA Mapp Seq Anal ; 29(8): 1261-1268, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29482423

RESUMEN

Urechis unicinctus is distributed only in Bohai Gulf of China and Korean and Japanese coast. The wild populations of this species have sharply declined in China and Japan. We collected 105 samples from six localities of Bohai Gulf and Korea coast, and investigated genetic diversity and population structure with mitochondrial COI, 16S-rRNA and nuclear 28S-rRNA gene fragments. Genetic diversity of U. unicinctus based on COI sequences was still high (Hd: 0.9595, π: 0.0101), however, 28S-rRNA gene sequences showed low level of genetic diversity (Hd: 0.4084, π: 0.0007). Based on COI sequences, FST values between populations ranged from -0.00204 to 0.05210, and 99.12% genetic diversity was contributed by different individuals within population. Both phylogenetic trees and median-joining network did not show clear geographic cluster, haplotypes from different populations were mixed. Our results indicated low level of genetic divergence among different localities of U. unicinctus, and this species should be treated as a whole population among China, Japan and Korea coast during species conservation.


Asunto(s)
Anélidos/genética , Genoma Mitocondrial , Polimorfismo Genético , Animales , Complejo IV de Transporte de Electrones/genética , Haplotipos , ARN Ribosómico 16S/genética , ARN Ribosómico 28S/genética
6.
Sci China C Life Sci ; 51(12): 1094-100, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19093083

RESUMEN

The compositions and contents of astaxanthin esters and fatty acids in four types of Haematococcus pluvialis cells were studied by HPLC and GC-MS. Results showed that the synthesis and accumulation of astaxanthin was independent of the formation of cysts, but was highly correlated with the synthesis and accumulation of fatty acids, though it is an well known phenomenon that the accumulation of astaxanthin is usually accompanied by the formation of cyst. The red cysts contain more than 30% of fatty acids, with 81% of the unsaturated fatty acids. Taken together, besides a resource of astaxanthin, H. pluvialis would be a good resource of valuable fatty acids.


Asunto(s)
Chlorophyta/citología , Chlorophyta/metabolismo , Ésteres/metabolismo , Ácidos Grasos/biosíntesis , Chlorophyta/química , Cromatografía Líquida de Alta Presión , Ésteres/química , Ácidos Grasos/química , Humanos , Xantófilas/biosíntesis , Xantófilas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA