Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Data Brief ; 7: 157-71, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27054149

RESUMEN

Single Molecule Localization Microscopy (SMLM) is a recently emerged optical imaging method that was shown to achieve a resolution in the order of tens of nanometers in intact cells. Novel high resolution imaging methods might be crucial for understanding of how the chromatin, a complex of DNA and proteins, is arranged in the eukaryotic cell nucleus. Such an approach utilizing switching of a fluorescent, DNA-binding dye Vybrant® DyeCycle™ Violet has been previously demonstrated by us (Zurek-Biesiada et al., 2015) [1]. Here we provide quantitative information on the influence of the chemical environment on the behavior of the dye, discuss the variability in the DNA-associated signal density, and demonstrate direct proof of enhanced structural resolution. Furthermore, we compare different visualization approaches. Finally, we describe various opportunities of multicolor DNA/SMLM imaging in eukaryotic cell nuclei.

2.
Exp Cell Res ; 343(2): 97-106, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26341267

RESUMEN

Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant(®) DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei of fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10(6) signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy.


Asunto(s)
Núcleo Celular/metabolismo , ADN/metabolismo , Colorantes Fluorescentes/metabolismo , Microscopía Fluorescente/métodos , Nanoestructuras/química , Imagen Individual de Molécula/métodos , Animales , Chlorocebus aethiops , Cromosomas/metabolismo , Drosophila melanogaster , Células Vero
3.
Nucleus ; 5(4): 331-40, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25482122

RESUMEN

Several approaches have been described to fluorescently label and image DNA and chromatin in situ on the single-molecule level. These superresolution microscopy techniques are based on detecting optically isolated, fluorescently tagged anti-histone antibodies, fluorescently labeled DNA precursor analogs, or fluorescent dyes bound to DNA. Presently they suffer from various drawbacks such as low labeling efficiency or interference with DNA structure. In this report, we demonstrate that DNA minor groove binding dyes, such as Hoechst 33258, Hoechst 33342, and DAPI, can be effectively employed in single molecule localization microscopy (SMLM) with high optical and structural resolution. Upon illumination with low intensity 405 nm light, a small subpopulation of these molecules stochastically undergoes photoconversion from the original blue-emitting form to a green-emitting form. Using a 491 nm laser excitation, fluorescence of these green-emitting, optically isolated molecules was registered until "bleached". This procedure facilitated substantially the optical isolation and localization of large numbers of individual dye molecules bound to DNA in situ, in nuclei of fixed mammalian cells, or in mitotic chromosomes, and enabled the reconstruction of high-quality DNA density maps. We anticipate that this approach will provide new insights into DNA replication, DNA repair, gene transcription, and other nuclear processes.


Asunto(s)
Cromatina/metabolismo , Colorantes Fluorescentes , Microscopía/métodos , Animales , Cromatina/genética , Reparación del ADN/genética , Reparación del ADN/fisiología , Replicación del ADN/genética , Replicación del ADN/fisiología , Humanos , Microscopía Fluorescente
4.
J Fluoresc ; 24(6): 1791-801, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25312832

RESUMEN

DNA-bound Hoechst 33258 is readily excited with UV light and emits blue fluorescence, however, upon exposure to UV, the dye undergoes photobleaching as well as photoconversion to a blue-excited green-emitting form. We demonstrate that the UV-generated green-emitting form of Hoechst 33258 exhibits spectral properties very similar to the form of the dye that can be obtained by subjecting it to an acidic environment (pH 0.5-3.0). We also demonstrate that exposure of Hoechst 33258 to UV light (or hydrogen peroxide) leads to generation of the protonated (1+, 2+, 3+ and possibly the 4+) forms of the dye. Photoconversion of Hoechst 33258 has recently been exploited in single molecule localisation microscopy, thus understanding photophysics of this process can facilitate further development of high resolution optical imaging.


Asunto(s)
Bisbenzimidazol/química , ADN/química , Colorantes Fluorescentes/química , Rayos Ultravioleta , Bisbenzimidazol/metabolismo , Bisbenzimidazol/efectos de la radiación , Células Cultivadas , ADN/metabolismo , ADN/efectos de la radiación , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Colorantes Fluorescentes/metabolismo , Colorantes Fluorescentes/efectos de la radiación , Humanos , Peróxido de Hidrógeno/farmacología , Concentración de Iones de Hidrógeno , Microscopía Fluorescente , Oxidantes/farmacología , Protones , Espectrometría de Masa por Ionización de Electrospray
5.
Cytometry A ; 83(5): 441-51, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23418106

RESUMEN

Hoechst 33258, DAPI and Vybrant DyeCycle are commonly known DNA fluorescent dyes that are excited by UV and emit in the blue region of the spectrum of visible light. Conveniently, they leave the reminder of the spectrum for microscopy detection of other cellular targets labeled with probes emitting in green, yellow or red. However, an exposure of these dyes to UV induces their photoconversion and results in production of the forms of these dyes that are excited by blue light and show fluoresce maxima in green and a detectable fluorescence in yellow and orange regions of the spectrum. Photoconversion of Hoechst 33258 and DAPI is reversible and independent of the dye concentration or the presence of DNA. Spectrofluorimetry and mass spectrometry analyses indicate that exposure to UV induces protonation of Hoechst 33258 and DAPI.


Asunto(s)
Bisbenzimidazol/efectos de la radiación , Colorantes Fluorescentes/efectos de la radiación , Indoles/efectos de la radiación , Luz , Microscopía Fluorescente/métodos , Protones , Rayos Ultravioleta , Bisbenzimidazol/metabolismo , Línea Celular , Células Cultivadas , Color , Relación Dosis-Respuesta en la Radiación , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Colorantes Fluorescentes/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Concentración de Iones de Hidrógeno , Indoles/metabolismo , Espectrometría de Masas , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...