Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(30): e2301538120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459522

RESUMEN

Pseudomonas aeruginosa (PA) CbpD belongs to the lytic polysaccharide monooxygenases (LPMOs), a family of enzymes that cleave chitin or related polysaccharides. Here, we demonstrate a virulence role of CbpD in PA pneumonia linked to impairment of host complement function and opsonophagocytic clearance. Following intratracheal challenge, a PA ΔCbpD mutant was more easily cleared and produced less mortality than the wild-type parent strain. The x-ray crystal structure of the CbpD LPMO domain was solved to subatomic resolution (0.75Å) and its two additional domains modeled by small-angle X-ray scattering and Alphafold2 machine-learning algorithms, allowing structure-based immune epitope mapping. Immunization of naive mice with recombinant CbpD generated high IgG antibody titers that promoted human neutrophil opsonophagocytic killing, neutralized enzymatic activity, and protected against lethal PA pneumonia and sepsis. IgG antibodies generated against full-length CbpD or its noncatalytic M2+CBM73 domains were opsonic and protective, even in previously PA-exposed mice, while antibodies targeting the AA10 domain were not. Preexisting antibodies in PA-colonized cystic fibrosis patients primarily target the CbpD AA10 catalytic domain. Further exploration of LPMO family proteins, present across many clinically important and antibiotic-resistant human pathogens, may yield novel and effective vaccine antigens.


Asunto(s)
Oxigenasas de Función Mixta , Neumonía , Humanos , Ratones , Animales , Oxigenasas de Función Mixta/metabolismo , Pseudomonas aeruginosa/metabolismo , Polisacáridos/metabolismo , Inmunización
2.
Adv Nanobiomed Res ; 3(2)2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37151210

RESUMEN

The highly multidrug-resistant (MDR) Gram-negative bacterial pathogen Acinetobacter baumannii is a top global health priority where an effective vaccine could protect susceptible populations and limit resistance acquisition. Outer membrane vesicles (OMVs) shed from Gram-negative bacteria are enriched with virulence factors and membrane lipids but heterogeneous in size and cargo. We report a vaccine platform combining precise and replicable nanoparticle technology with immunogenic A. baumannii OMVs (Ab-OMVs). Gold nanoparticle cores coated with Ab-OMVs (Ab-NPs) induced robust IgG titers in rabbits that enhanced human neutrophil opsonophagocytic killing and passively protected against lethal A. baumannii sepsis in mice. Active Ab-NP immunization in mice protected against sepsis and pneumonia, accompanied by B cell recruitment to draining lymph nodes, activation of dendritic cell markers, improved splenic neutrophil responses, and mitigation of proinflammatory cytokine storm. Nanoparticles are an efficient and efficacious platform for OMV vaccine delivery against A. baumannii and perhaps other high-priority MDR pathogens.

3.
Microb Pathog ; 169: 105636, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35724830

RESUMEN

Streptococcus pyogenes is a pre-eminent human pathogen, and classified by the hypervariable sequence of the emm gene encoding the cell surface M protein. Among a diversity of M/emm types, the prevalence of the M/emm87 strain has been steadily increasing in invasive S. pyogenes infections. Although M protein is the major virulence factor for globally disseminated M/emm1 strain, it is unclear if or how the corresponding M protein of M/emm87 strain (M87 protein) functions as a virulence factor. Here, we use targeted mutagenesis to show that the M87 protein contributes to bacterial resistance to neutrophil and whole blood killing and promotes the release of mature IL-1ß from macrophages. While deletion of emm87 did not influence epithelial cell adherence and nasal colonization, it significantly reduced S. pyogenes-induced mortality and bacterial loads in a murine systemic infection model. Our data suggest that emm87 is involved in pathogenesis by modulating the interaction between S. pyogenes and innate immune cells.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus pyogenes , Animales , Antígenos Bacterianos/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Humanos , Inmunidad Innata , Ratones , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
4.
Cell Rep ; 34(13): 108924, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33789094

RESUMEN

The arginine deiminase (ADI) pathway has been found in many kinds of bacteria and functions to supplement energy production and provide protection against acid stress. The Streptococcus pyogenes ADI pathway is upregulated upon exposure to various environmental stresses, including glucose starvation. However, there are several unclear points about the advantages to the organism for upregulating arginine catabolism. We show that the ADI pathway contributes to bacterial viability and pathogenesis under low-glucose conditions. S. pyogenes changes global gene expression, including upregulation of virulence genes, by catabolizing arginine. In a murine model of epicutaneous infection, S. pyogenes uses the ADI pathway to augment its pathogenicity by increasing the expression of virulence genes, including those encoding the exotoxins. We also find that arginine from stratum-corneum-derived filaggrin is a key substrate for the ADI pathway. In summary, arginine is a nutrient source that promotes the pathogenicity of S. pyogenes on the skin.


Asunto(s)
Arginina/metabolismo , Piel/microbiología , Streptococcus pyogenes/patogenicidad , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Filagrina , Regulación Bacteriana de la Expresión Génica , Células HaCaT , Humanos , Hidrolasas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Viabilidad Microbiana , Fosforilación , Piel/patología , Infecciones Estreptocócicas/sangre , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/patología , Streptococcus pyogenes/genética , Transcriptoma/genética , Regulación hacia Arriba , Virulencia
5.
Nat Commun ; 12(1): 1230, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33623002

RESUMEN

The recently discovered lytic polysaccharide monooxygenases (LPMOs), which cleave polysaccharides by oxidation, have been associated with bacterial virulence, but supporting functional data is scarce. Here we show that CbpD, the LPMO of Pseudomonas aeruginosa, is a chitin-oxidizing virulence factor that promotes survival of the bacterium in human blood. The catalytic activity of CbpD was promoted by azurin and pyocyanin, two redox-active virulence factors also secreted by P. aeruginosa. Homology modeling, molecular dynamics simulations, and small angle X-ray scattering indicated that CbpD is a monomeric tri-modular enzyme with flexible linkers. Deletion of cbpD rendered P. aeruginosa unable to establish a lethal systemic infection, associated with enhanced bacterial clearance in vivo. CbpD-dependent survival of the wild-type bacterium was not attributable to dampening of pro-inflammatory responses by CbpD ex vivo or in vivo. Rather, we found that CbpD attenuates the terminal complement cascade in human serum. Studies with an active site mutant of CbpD indicated that catalytic activity is crucial for virulence function. Finally, profiling of the bacterial and splenic proteomes showed that the lack of this single enzyme resulted in substantial re-organization of the bacterial and host proteomes. LPMOs similar to CbpD occur in other pathogens and may have similar immune evasive functions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Infecciones por Pseudomonas/enzimología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/patogenicidad , Animales , Proteínas Bacterianas/química , Proteínas Portadoras/química , Muerte Celular , Proteínas del Sistema Complemento/metabolismo , Humanos , Ratones , Viabilidad Microbiana , Oxidación-Reducción , Dominios Proteicos , Proteoma/metabolismo , Proteómica , Infecciones por Pseudomonas/sangre , Especificidad por Sustrato , Transcripción Genética , Virulencia , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...