Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256179

RESUMEN

Oxidative stress is involved in a wide range of age-related diseases. A critical role has been proposed for mitochondrial oxidative stress in initiating or promoting these pathologies and the potential for mitochondria-targeted antioxidants to fight them, making their search and testing a very urgent task. In this study, the mitochondria-targeted antioxidants SkQ1, SkQ3 and MitoQ were examined as they affected isolated rat liver mitochondria and yeast cells, comparing SkQ3 with clinically tested SkQ1 and MitoQ. At low concentrations, all three substances stimulated the oxidation of respiratory substrates in state 4 respiration (no ADP addition); at higher concentrations, they inhibited the ADP-triggered state 3 respiration and the uncoupled state, depolarized the inner mitochondrial membrane, contributed to the opening of the mPTP (mitochondrial permeability transition pore), did not specifically affect ATP synthase, and had a pronounced antioxidant effect. SkQ3 was the most active antioxidant, not possessing, unlike SkQ1 or MitoQ, prooxidant activity with increasing concentrations. In yeast cells, all three substances reduced prooxidant-induced intracellular oxidative stress and cell death and prevented and reversed mitochondrial fragmentation, with SkQ3 being the most efficient. These data allow us to consider SkQ3 as a promising potential therapeutic agent to mitigate pathologies associated with oxidative stress.


Asunto(s)
Mitocondrias Hepáticas , Saccharomyces cerevisiae , Animales , Ratas , Antioxidantes/farmacología , Mitocondrias , Membranas Mitocondriales , Especies Reactivas de Oxígeno
2.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37372938

RESUMEN

Alzheimer's disease (AD) is an age-related, multifaceted neurological disorder associated with accumulation of aggregated proteins (amyloid Aß and hyperphosphorylated tau), loss of synapses and neurons, and alterations in microglia. AD was recognized by the World Health Organization as a global public health priority. The pursuit of a better understanding of AD forced researchers to pay attention to well-defined single-celled yeasts. Yeasts, despite obvious limitations in application to neuroscience, show high preservation of basic biological processes with all eukaryotic organisms and offer great advantages over other disease models due to the simplicity, high growth rates on low-cost substrates, relatively simple genetic manipulations, the large knowledge base and data collections, and availability of an unprecedented amount of genomic and proteomic toolboxes and high-throughput screening techniques, inaccessible to higher organisms. Research reviewed above clearly indicates that yeast models, together with other, more simple eukaryotic models including animal models, C. elegans and Drosophila, significantly contributed to understanding Aß and tau biology. These models allowed high throughput screening of factors and drugs that interfere with Aß oligomerization, aggregation and toxicity, and tau hyperphosphorylation. In the future, yeast models will remain relevant, with a focus on creating novel high throughput systems to facilitate the identification of the earliest AD biomarkers among different cellular networks in order to achieve the main goal-to develop new promising therapeutic strategies to treat or prevent the disease.


Asunto(s)
Enfermedad de Alzheimer , Animales , Enfermedad de Alzheimer/metabolismo , Saccharomyces cerevisiae/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Caenorhabditis elegans/metabolismo , Proteómica , Modelos Animales de Enfermedad
3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674415

RESUMEN

Alzheimer's disease (AD) is an incurable, age-related neurological disorder, the most common form of dementia. Considering that AD is a multifactorial complex disease, simplified experimental models are required for its analysis. For this purpose, genetically modified Yarrowia lipolytica yeast strains expressing Aß42 (the main biomarker of AD), eGFP-Aß42, Aß40, and eGFP-Aß40 were constructed and examined. In contrast to the cells expressing eGFP and eGFP-Aß40, retaining "normal" mitochondrial reticulum, eGFP-Aß42 cells possessed a disturbed mitochondrial reticulum with fragmented mitochondria; this was partially restored by preincubation with a mitochondria-targeted antioxidant SkQThy. Aß42 expression also elevated ROS production and cell death; low concentrations of SkQThy mitigated these effects. Aß42 expression caused mitochondrial dysfunction as inferred from a loose coupling of respiration and phosphorylation, the decreased level of ATP production, and the enhanced rate of hydrogen peroxide formation. Therefore, we have obtained the same results described for other AD models. Based on an analysis of these and earlier data, we suggest that the mitochondrial fragmentation might be a biomarker of the earliest preclinical stage of AD with an effective therapy based on mitochondria- targeted antioxidants. The simple yeast model constructed can be a useful platform for the rapid screening of such compounds.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/metabolismo , Mitocondrias/metabolismo , Biomarcadores/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Metabolismo Energético
4.
Biochemistry (Mosc) ; 87(8): 689-701, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36171651

RESUMEN

Alzheimer's disease is the most common age-related progressive neurodegenerative disorder of brain cortex and hippocampus leading to cognitive impairment. Accumulation of extracellular amyloid plaques and intraneuronal neurofibrillary tangles are believed to be the main hallmarks of the disease. Origin of Alzheimer's disease is not totally clear, multiple initiator factors are likely to exist. Intracellular impacts of Alzheimer's disease include mitochondrial dysfunction, oxidative stress, ER-stress, disruption of autophagy, severe metabolic challenges leading to massive neuronal apoptosis. Mitochondria are the key players in all these processes. This formed the basis for the so-called mitochondrial cascade hypothesis. This review provides current data on the molecular mechanisms of the development of Alzheimer's disease associated with mitochondria. Special attention was paid to the interaction between Tau protein and mitochondria, as well as to the promising therapeutic approaches aimed at preventing development of neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Autofagia , Humanos , Mitocondrias/metabolismo , Estrés Oxidativo , Proteínas tau/metabolismo
5.
Microorganisms ; 10(9)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36144419

RESUMEN

Chronic hepatitis B virus infection is the dominant cause of hepatocellular carcinoma, the main cause of cancer death. HBx protein, a multifunctional protein, is essential for pathogenesis development; however, the underlying mechanisms are not fully understood. The complexity of the system itself, and the intricate interplay of many factors make it difficult to advance in understanding the mechanisms underlying these processes. The most obvious solution is to use simpler systems by reducing the number of interacting factors. Yeast cells are particularly suitable for studying the relationships between oxidative stress, mitochondrial dynamics (mitochondrial fusion and fragmentation), and mitochondrial dysfunction involved in HBx-mediated pathogenesis. For the first time, genetically modified yeast, Y. lipolytica, was created, expressing the hepatitis B virus core protein HBx, as well as a variant fused with eGFP at the C-end. It was found that cells expressing HBx experienced stronger oxidative stress than the control cells. Oxidative stress was alleviated by preincubation with the mitochondria-targeted antioxidant SkQThy. Consistent with these data, in contrast to the control cells (pZ-0) containing numerous mitochondrial forming a mitochondrial reticulum, in cells expressing HBx protein, mitochondria were fragmented, and preincubation with SkQThy partially restored the mitochondrial reticulum. Expression of HBx had a significant influence on the bioenergetic function of mitochondria, making them loosely coupled with decreased respiratory rate and reduced ATP formation. In sum, the first highly promising yeast model for studying the impact of HBx on bioenergy, redox-state, and dynamics of mitochondria in the cell and cross-talk between these parameters was offered. This fairly simple model can be used as a platform for rapid screening of potential therapeutic agents, mitigating the harmful effects of HBx.

6.
Antioxidants (Basel) ; 10(1)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467672

RESUMEN

Mitochondria are considered to be the main source of reactive oxygen species (ROS) in the cell. It was shown that in cardiac myocytes exposed to excessive oxidative stress, ROS-induced ROS release is triggered. However, cardiac myocytes have a network of densely packed organelles that do not move, which is not typical for the majority of eukaryotic cells. The purpose of this study was to trace the spatiotemporal development (propagation) of prooxidant-induced oxidative stress and its interplay with mitochondrial dynamics. We used Dipodascus magnusii yeast cells as a model, as they have advantages over other models, including a uniquely large size, mitochondria that are easy to visualize and freely moving, an ability to vigorously grow on well-defined low-cost substrates, and high responsibility. It was shown that prooxidant-induced oxidative stress was initiated in mitochondria, far preceding the appearance of generalized oxidative stress in the whole cell. For yeasts, these findings were obtained for the first time. Preincubation of yeast cells with SkQ1, a mitochondria-addressed antioxidant, substantially diminished production of mitochondrial ROS, while only slightly alleviating the generalized oxidative stress. This was expected, but had not yet been shown. Importantly, mitochondrial fragmentation was found to be primarily induced by mitochondrial ROS preceding the generalized oxidative stress development.

7.
Biochim Biophys Acta Bioenerg ; 1861(8): 148210, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32305410

RESUMEN

An increase in the production of reactive oxygen species (ROS) in mitochondria due to targeted delivery of redox active compounds may be useful in studies of modulation of cell functions by mitochondrial ROS. Recently, the mitochondria-targeted derivative of menadione (MitoK3) was synthesized. However, MitoK3 did not induce mitochondrial ROS production and lipid peroxidation while exerting significant cytotoxic action. Here we synthesized 1,4-naphthoquinone conjugated with alkyltriphenylphosphonium (SkQN) as a prototype of mitochondria-targeted prooxidant, and its redox properties, interactions with isolated mitochondria, yeast cells and various human cell lines were investigated. According to electrochemical measurements, SkQN was more active redox agent and, due to the absence of methyl group in the naphthoquinone ring, more reactive as electrophile than MitoK3. SkQN (but not MitoK3) stimulated hydrogen peroxide production in isolated mitochondria. At low concentrations, SkQN stimulated state 4 respiration in mitochondria, decreased membrane potential, and blocked ATP synthesis, being more efficient uncoupler of oxidative phosphorylation than MitoK3. In yeast cells, SkQN decreased cell viability and induced oxidative stress and mitochondrial fragmentation. SkQN killed various tumor cells much more efficiently than MitoK3. Since many tumors are characterized by increased oxidative stress, the use of new mitochondria-targeted prooxidants may be a promising strategy for anticancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Mitocondrias/efectos de los fármacos , Naftoquinonas/farmacología , Especies Reactivas de Oxígeno/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/metabolismo , Naftoquinonas/química , Fosforilación Oxidativa/efectos de los fármacos , Oxígeno/metabolismo , Compuestos de Fósforo/química , Especies Reactivas de Oxígeno/química
8.
Oxid Med Cell Longev ; 2020: 8956504, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32104543

RESUMEN

Benzalkonium chloride (BAC) is currently the most commonly used antimicrobial preservative in ophthalmic solutions, nasal sprays, and cosmetics. However, a large number of clinical and experimental investigations showed that the topical administration of BAC-containing eye drops could cause a variety of ocular surface changes, from ocular discomfort to potential risk for future glaucoma surgery. BAC-containing albuterol may increase the risk of albuterol-related systemic adverse effects. BAC, commonly present in personal care products, in cosmetic products can induce irritation and dose-dependent changes in the cell morphology. The cationic nature of BAC (it is a quaternary ammonium) suggests that one of the major targets of BAC in the cell may be mitochondria, the only intracellular compartment charged negatively. However, the influence of BAC on mitochondria has not been clearly understood. Here, the effects of BAC on energy parameters of rat liver mitochondria as well as on yeast cells were examined. BAC, being a "weaker" uncoupler, potently inhibited respiration in state 3, diminished the mitochondrial membrane potential, caused opening of the Ca2+/Pi-dependent pore, blocked ATP synthesis, and promoted H2O2 production by mitochondria. BAC triggered oxidative stress and mitochondrial fragmentation in yeast cells. BAC-induced oxidative stress in mitochondria and yeast cells was almost totally prevented by the mitochondria-targeted antioxidant SkQ1; the protective effect of SkQ1 on mitochondrial fragmentation was only partial. Collectively, these data showed that BAC acts adversely on cell bioenergetics (especially on ATP synthesis) and mitochondrial dynamics and that its prooxidant effect can be partially prevented by the mitochondria-targeted antioxidant SkQ1.


Asunto(s)
Compuestos de Benzalconio/farmacología , Mitocondrias Hepáticas/metabolismo , Animales , Antioxidantes/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo
9.
Anal Biochem ; 552: 24-29, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28412172

RESUMEN

The overwhelming majority of investigations on mitochondrial morphology were performed using S. cerevisiae. In this study we showed the benefits of applying new model organisms including petite-negative D. magnusii and Y. lipolytica yeasts for visualization of mitochondrial fragmentation. Normally giant D. magnusii cells and filament-like Y. lipolytica cells contain the highly structured mitochondrial reticulum. Oxidative stress mediated by tert-butyl hydroperoxide triggered mitochondrial fragmentation in yeasts. In D. magnusii mitochondrial fragmentation was also induced by impairing the oxidative phosphorylation system. Higher prooxidant concentrations caused cell death. Cationic lipophilic antioxidant SkQ1 acted downstream of the excessive ROS production and prevented partially or almost totally oxidative stress and related mitochondrial fragmentation and cell death. We believe that utility of D. magnusii and Y. lipolytica yeasts as a "living test tube" would be useful for providing new information concerning the interplay between mitochondrial dynamics and mitochondrial dysfunction, cell cycle, aging, mitophagy and cell death.


Asunto(s)
Mitocondrias/efectos de los fármacos , Modelos Biológicos , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Levaduras/metabolismo , Citometría de Flujo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microscopía Fluorescente , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , terc-Butilhidroperóxido/farmacología
10.
Biochim Biophys Acta ; 1837(10): 1739-47, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25038514

RESUMEN

Limited uncoupling of oxidative phosphorylation is known to be beneficial in various laboratory models of diseases. The search for cationic uncouplers is promising as their protonophorous effect is self-limiting because these uncouplers lower membrane potential which is the driving force for their accumulation in mitochondria. In this work, the penetrating cation Rhodamine 19 butyl ester (C4R1) was found to decrease membrane potential and to stimulate respiration of mitochondria, appearing to be a stronger uncoupler than its more hydrophobic analog Rhodamine 19 dodecyl ester (C12R1). Surprisingly, C12R1 increased H(+) conductance of artificial bilayer lipid membranes or induced mitochondria swelling in potassium acetate with valinomycin at concentrations lower than C4R1. This paradox might be explained by involvement of mitochondrial proteins in the uncoupling action of C4R1. In experiments with HeLa cells, C4R1 rapidly and selectively accumulated in mitochondria and stimulated oligomycin-sensitive respiration as a mild uncoupler. C4R1 was effective in preventing oxidative stress induced by brain ischemia and reperfusion in rats: it suppressed stroke-induced brain swelling and prevented the decline in neurological status more effectively than C12R1. Thus, C4R1 seems to be a promising example of a mild uncoupler efficient in treatment of brain pathologies related to oxidative stress.


Asunto(s)
Mitocondrias Hepáticas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Rodaminas/farmacología , Desacopladores/farmacología , Animales , Células HeLa , Humanos , Membrana Dobles de Lípidos , Ratas , Rodaminas/química
11.
FEBS Lett ; 587(13): 2018-24, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23665033

RESUMEN

Since the times of the Bible, an extract of black cumin seeds was used as a medicine to treat many human pathologies. Thymoquinone (2-demethylplastoquinone derivative) was identified as an active antioxidant component of this extract. Recently, it was shown that conjugates of plastoquinone and penetrating cations are potent mitochondria-targeted antioxidants effective in treating a large number of age-related pathologies. This review summarizes new data on the antioxidant and some other properties of membrane-penetrating cationic compounds where 2-demethylplastoquinone substitutes for plastoquinone. It was found that such a substitution significantly increases a window between anti- and prooxidant concentrations of the conjugates. Like the original plastoquinone derivatives, the novel compounds are easily reduced by the respiratory chain, penetrate through model and natural membranes, specifically accumulate in mitochondria in an electrophoretic fashion, and strongly inhibit H2O2-induced apoptosis at pico- and nanomolar concentrations in cell cultures. At present, cationic demethylplastoquinone derivatives appear to be the most promising mitochondria-targeted drugs of the quinone series.


Asunto(s)
Antioxidantes/farmacología , Mitocondrias/efectos de los fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacología , Animales , Antioxidantes/metabolismo , Benzoquinonas/metabolismo , Benzoquinonas/farmacología , Cationes , Permeabilidad de la Membrana Celular , Sistemas de Liberación de Medicamentos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción , Plastoquinona/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
Curr Pharm Des ; 19(15): 2795-806, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23092317

RESUMEN

Novel penetrating cations were used for the design of mitochondria-targeted compounds and tested in model lipid membranes, in isolated mitochondria and in living human cells in culture. Rhodamine-19, berberine and palmatine were conjugated by aliphatic linkers with plastoquinone possessing antioxidant activity. These conjugates (SkQR1,SkQBerb, SkQPalm) and their analogs lacking plastoquinol moiety (C12R1,C10Berb and C10Palm) penetrated bilayer phospholipid membrane in their cationic forms and accumulated in isolated mitochondria or in mitochondria of living cells due to membrane potential negative inside. Reduced forms of SkQR1, SkQBerb and SkQPalm inhibited lipid peroxidation in isolated mitochondria at nanomolar concentrations. In human fibroblasts SkQR1, SkQBerb and SkQPalm prevented fragmentation of mitochondria and apoptosis induced by hydrogen peroxide. SkQR1 was effective at subnanomolar concentrations while SkQberb, SkQPalm and SkQ1 (prototypic conjugate of plastoquinone with dodecyltriphenylphosphonium) were effective at 10-times higher concentrations. The aliphatic conjugates of berberine and palmatine (as well as the conjugates of triphenylphosphonium) induced proton transport mediated by free fatty acids (FA) both in the model and mitochondrial membrane. In mitochondria this process was facilitated by the adenine nucleotide carrier. In contrast to the other cationic conjugates, SkQR1 and C12R1 induced FA-independent proton conductivity due to protonation/deprotonation of the rhodamine residue. This property in combination with the antioxidant activity probably makes rhodamine conjugates highly effective in protection against oxidative stress. The novel cationic conjugates described here are promising candidates for drugs against various pathologies and aging as mitochondria-targeted antioxidants and selective mild uncouplers.


Asunto(s)
Mitocondrias/metabolismo , Cationes , Células HeLa , Humanos , Membrana Dobles de Lípidos , Membranas Artificiales , Fosfolípidos/metabolismo
13.
Mitochondrion ; 13(5): 500-6, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23085197

RESUMEN

The effects of the mitochondria-targeted lipophilic cation dodecyltriphenylphosphonium (C12TPP, the charge is delocalized and screened by bulky hydrophobic residues) and those of lipophilic cations decyltriethylammonium bromide and cetyltrimethylammonium bromide (C10TEA and C16TMA, the charges are localized and screened by less bulky residues) on bilayer planar phospholipid membranes and tightly-coupled mitochondria from the yeast Yarrowia lipolytica have been compared. In planar membranes, C12TPP was found to generate a diffusion potential as if it easily penetrates these membranes. In the presence of palmitate, C12TPP induced H(+) permeability like plastoquinonyl decyltriphenilphosphonium that facilitates transfer of fatty acid anions (Severin et al., PNAS, 2010, 107, 663-668). C12TPP was shown to stimulate State 4 respiration of mitochondria and caused a mitochondrial membrane depolarization with a half-maximal effect at 6µM. Besides, C12TPP profoundly potentiated the uncoupling effect of endogenous or added fatty acids. C10TEA and C16TMA inhibited State 4 respiration and decreased the membrane potential, though at much higher concentrations than C12TPP, and they did not promote the uncoupling action of fatty acids. These relationships were modeled by molecular dynamics. They can be explained by different membrane permeabilities for studied cations, which in turn are due to different availabilities of the positive charge in these cations to water dipoles.


Asunto(s)
Cationes/metabolismo , Compuestos de Cetrimonio/metabolismo , Membranas/metabolismo , Membranas Mitocondriales/metabolismo , Compuestos Organofosforados/metabolismo , Permeabilidad , Compuestos de Amonio Cuaternario/metabolismo , Cationes/química , Respiración de la Célula/efectos de los fármacos , Cetrimonio , Compuestos de Cetrimonio/química , Ácidos Grasos/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Modelos Químicos , Compuestos Organofosforados/química , Compuestos de Amonio Cuaternario/química , Yarrowia
14.
Mitochondrion ; 13(5): 520-5, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23026390

RESUMEN

Previously it has been shown by our group that berberine and palmatine, penetrating cations of plant origin, when conjugated with plastoquinone (SkQBerb and SkQPalm), can accumulate in isolated mitochondria or in mitochondria of living cells and effectively protect them from oxidative damage. In the present work, we demonstrate that SkQBerb, SkQPalm, and their analogs lacking the plastoquinone moiety (C10Berb and C10Palm) operate as mitochondria-targeted compounds facilitating protonophorous effect of free fatty acids. These compounds induce proton transport mediated by small concentrations of added fatty acids both in planar and liposomal model lipid membranes. In mitochondria, such an effect can be carried out by endogenous fatty acids and the adenine nucleotide translocase.


Asunto(s)
Alcaloides de Berberina/metabolismo , Berberina/metabolismo , Ácidos Grasos/metabolismo , Membranas/metabolismo , Mitocondrias/metabolismo , Alcaloides/metabolismo , Cationes/metabolismo , Hidrógeno/metabolismo , Membranas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Plastoquinona/metabolismo
15.
Biochim Biophys Acta ; 1797(6-7): 878-89, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20307489

RESUMEN

The present state of the art in studies on the mechanisms of antioxidant activities of mitochondria-targeted cationic plastoquinone derivatives (SkQs) is reviewed. Our experiments showed that these compounds can operate as antioxidants in two quite different ways, i.e. (i) by preventing peroxidation of cardiolipin [Antonenko et al., Biochemistry (Moscow) 73 (2008) 1273-1287] and (ii) by fatty acid cycling resulting in mild uncoupling that inhibits the formation of reactive oxygen species (ROS) in mitochondrial State 4 [Severin et al. Proc. Natl. Acad. Sci. USA 107 (2009), 663-668]. The quinol and cationic moieties of SkQ are involved in cases (i) and (ii), respectively. In case (i) SkQH2 interrupts propagation of chain reactions involved in peroxidation of unsaturated fatty acid residues in cardiolipin, the formed SkQ- being reduced back to SkQH2 by heme bH of complex III in an antimycin-sensitive way. Molecular dynamics simulation showed that there are two stable conformations of SkQ1 with the quinol residue localized near peroxyl radicals at C9 or C13 of the linoleate residue in cardiolipin. In mechanism (ii), fatty acid cycling mediated by the cationic SkQ moiety is involved. It consists of (a) transmembrane movement of the fatty acid anion/SkQ cation pair and (b) back flows of free SkQ cation and protonated fatty acid. The cycling results in a protonophorous effect that was demonstrated in planar phospholipid membranes and liposomes. In mitochondria, the cycling gives rise to mild uncoupling, thereby decreasing membrane potential and ROS generation coupled to reverse electron transport in the respiratory chain. In yeast cells, dodecyltriphenylphosphonium (capital ES, Cyrillic12TPP), the cationic part of SkQ1, induces uncoupling that is mitochondria-targeted since capital ES, Cyrillic12TPP is specifically accumulated in mitochondria and increases the H+ conductance of their inner membrane. The conductance of the outer cell membrane is not affected by capital ES, Cyrillic12TPP.


Asunto(s)
Antioxidantes/farmacología , Cardiolipinas/metabolismo , Ácidos Grasos/metabolismo , Plastoquinona/análogos & derivados , Animales , Antioxidantes/química , Cardiolipinas/química , Diseño de Fármacos , Humanos , Técnicas In Vitro , Cinética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Simulación de Dinámica Molecular , Oxidación-Reducción , Plastoquinona/química , Plastoquinona/farmacología , Ratas
16.
J Bioenerg Biomembr ; 41(3): 239-49, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19609656

RESUMEN

In this study we used tightly-coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, possessing a respiratory chain with the usual three points of energy conservation. High-amplitude swelling and collapse of the membrane potential were used as parameters for demonstrating induction of the mitochondrial permeability transition due to opening of a pore (mPTP). Mitochondria from Y. lipolytica, lacking a natural mitochondrial Ca(2+) uptake pathway, and from D. magnusii, harboring a high-capacitive, regulated mitochondrial Ca(2+) transport system (Bazhenova et al. J Biol Chem 273:4372-4377, 1998a; Bazhenova et al. Biochim Biophys Acta 1371:96-100, 1998b; Deryabina and Zvyagilskaya Biochemistry (Moscow) 65:1352-1356, 2000; Deryabina et al. J Biol Chem 276:47801-47806, 2001) were very resistant to Ca(2+) overload. However, exposure of yeast mitochondria to 50-100 microM Ca(2+) in the presence of the Ca(2+) ionophore ETH129 induced collapse of the membrane potential, possibly due to activation of the fatty acid-dependent Ca(2+)/nH(+)-antiporter, with no classical mPTP induction. The absence of response in yeast mitochondria was not simply due to structural limitations, since large-amplitude swelling occurred in the presence of alamethicin, a hydrophobic, helical peptide, forming voltage-sensitive ion channels in lipid membranes. Ca(2+)- ETH129-induced activation of the Ca(2+)/H(+)-antiport system was inhibited and prevented by bovine serum albumin, and partially by inorganic phosphate and ATP. We subjected yeast mitochondria to other conditions known to induce the permeability transition in animal mitochondria, i.e., Ca(2+) overload (in the presence of ETH129) combined with palmitic acid (Mironova et al. J Bioenerg Biomembr 33:319-331, 2001; Sultan and Sokolove Arch Biochem Biophys 386:37-51, 2001), SH-reagents, carboxyatractyloside (an inhibitor of the ADP/ATP translocator), depletion of intramitochondrial adenine nucleotide pools, deenergization of mitochondria, and shifting to acidic pH values in the presence of high phosphate concentrations. None of the above-mentioned substances or conditions induced a mPTP-like pore. It is thus evident that the permeability transition in yeast mitochondria is not coupled with Ca(2+) uptake and is differently regulated compared to the mPTP of animal mitochondria.


Asunto(s)
Dipodascus/citología , Potenciales de la Membrana/fisiología , Membranas Mitocondriales/fisiología , Yarrowia/citología , Alameticina/farmacología , Antiportadores/metabolismo , Calcio/metabolismo , Calcio/farmacología , Proteínas de Transporte de Catión/metabolismo , Ciclohexanos/farmacología , Ionóforos/farmacología , Potenciales de la Membrana/efectos de los fármacos , Permeabilidad
17.
J Mol Biol ; 389(5): 846-62, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19393666

RESUMEN

Bacterial pentaheme cytochrome c nitrite reductases (NrfAs) are key enzymes involved in the terminal step of dissimilatory nitrite reduction of the nitrogen cycle. Their structure and functions are well studied. Recently, a novel octaheme cytochrome c nitrite reductase (TvNiR) has been isolated from the haloalkaliphilic bacterium Thioalkalivibrio nitratireducens. Here we present high-resolution crystal structures of the apoenzyme and its complexes with the substrate (nitrite) and the inhibitor (azide). Both in the crystalline state and in solution, TvNiR exists as a stable hexamer containing 48 hemes-the largest number of hemes accommodated within one protein molecule known to date. The subunit of TvNiR consists of two domains. The N-terminal domain has a unique fold and contains three hemes. The catalytic C-terminal domain hosts the remaining five hemes, their arrangement, including the catalytic heme, being identical to that found in NrfAs. The complete set of eight hemes forms a spatial pattern characteristic of other multiheme proteins, including structurally characterized octaheme cytochromes. The catalytic machinery of TvNiR resembles that of NrfAs. It comprises the lysine residue at the proximal position of the catalytic heme, the catalytic triad of tyrosine, histidine, and arginine at the distal side, channels for the substrate and product transport with a characteristic gradient of electrostatic potential, and, finally, two conserved Ca(2+)-binding sites. However, TvNiR has a number of special structural features, including a covalent bond between the catalytic tyrosine and the adjacent cysteine and the unusual topography of the product channels that open into the void interior space of the protein hexamer. The role of these characteristic structural features in the catalysis by this enzyme is discussed.


Asunto(s)
Proteínas Bacterianas/química , Citocromos a1/química , Citocromos c1/química , Ectothiorhodospiraceae/enzimología , Nitrato Reductasas/química , Estructura Cuaternaria de Proteína , Secuencia de Aminoácidos , Azidas/metabolismo , Cristalografía por Rayos X , Hemo/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Nitritos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia
18.
FEMS Yeast Res ; 8(5): 685-96, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18625026

RESUMEN

The Na(+)-coupled, high-affinity Pho89 plasma membrane phosphate transporter in Saccharomyces cerevisiae has so far been difficult to study because of its low activity and special properties. In this study, we have used a pho84Deltapho87Deltapho90Deltapho91Delta quadruple deletion strain of S. cerevisiae devoid of all transporter genes specific for inorganic phosphate, except for PHO89, to functionally characterize Pho89 under conditions where its expression is hyperstimulated. Under these conditions, the Pho89 protein is strongly upregulated and is the sole high-capacity phosphate transporter sustaining cellular acquisition of inorganic phosphate. Even if Pho89 is synthesized in cells grown at pH 4.5-8.0, the transporter is functionally active under alkaline conditions only, with a K(m) value reflecting high-affinity properties of the transporter and with a transport rate about 100-fold higher than that of the protein in a wild-type strain. Even under these hyperexpressive conditions, Pho89 is unable to sense and signal extracellular phosphate levels. In cells grown at pH 8.0, Pho89-mediated phosphate uptake at alkaline pH is cation-dependent with a strong activation by Na(+) ions and sensitivity to carbonyl cyanide m-chlorophenylhydrazone. The contribution of H(+)- and Na(+)-coupled phosphate transport systems in wild-type cells grown at different pH values was quantified. The contribution of the Na(+)-coupled transport system to the total cellular phosphate uptake activity increases progressively with increasing pH.


Asunto(s)
Dosificación de Gen , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Eliminación de Gen , Concentración de Iones de Hidrógeno , Cinética , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Sodio/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Desacopladores/farmacología
19.
Biochim Biophys Acta ; 1764(4): 715-23, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16500161

RESUMEN

A highly active cytochrome c nitrite reductase from the haloalkaliphilic sulfur-oxidizing non-ammonifying bacterium Tv. nitratireducens strain ALEN 2 (TvNiR) was isolated and purified to apparent electrophoretic homogeneity. The enzyme catalyzes reductive conversion of nitrite and hydroxylamine to ammonia without release of any intermediates, as well as reduction of sulfite to sulfide. TvNiR also possesses peroxidase activity. In solution TvNiR exists as a stable hexamer with molecular mass of about 360kDa. Each TvNiR subunit with molecular mass of 64kDa contains, as defined from spectral properties and sequence analysis, eight c-type haems. Seven of them are coordinated by the characteristic CXXCH motifs for haem c binding, while one is bonded by the unique CXXCK motif. So far, this motif coordinating the catalytic haem was found only in bacterial cytochrome c nitrite reductases (ccNiRs). All the residues essential for catalysis in the known ccNiRs were also identified in TvNiR. However, TvNiR is only distantly related to known bacterial ammonifying dissimilatory ccNiRs, sharing no more than 20% homology.


Asunto(s)
Citocromos a1/química , Citocromos a1/metabolismo , Citocromos c1/química , Citocromos c1/metabolismo , Nitrato Reductasas/química , Nitrato Reductasas/metabolismo , Secuencia de Aminoácidos , Ectothiorhodospiraceae/enzimología , Hemo/análisis , Cinética , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Alineación de Secuencia , Espectrofotometría
20.
Biosci Rep ; 24(2): 117-26, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15628666

RESUMEN

Energy status of the novel alkalitolerant Yarrowia lipolytica yeast strain grown at alkaline conditions (pH 9.7) was examined. Cells grown under such severe conditions were found to preserve high respiratory activity. The oxidative phosphorylation system dominated in the energy budget of the cell. A procedure was specially design to isolate tightly coupled mitochondria from yeast cells grown at alkaline conditions. The isolated mitochondrial preparations met known criteria of physiological intactness, as inferred from their ability to maintain distinctive state 4-3 respiration transition upon addition of ADP, high respiratory rates, good respiratory control values, and ADP/O ratios close to the theoretically expected maxima for the substrates used.


Asunto(s)
Metabolismo Energético , Yarrowia/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Respiración de la Célula , Concentración de Iones de Hidrógeno , Cinética , Potenciales de la Membrana , Mitocondrias/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa , Consumo de Oxígeno , Yarrowia/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...