Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000236

RESUMEN

Thyroid cancer (TC) is a neoplasm with an increasing incidence worldwide. Its etiology is complex and based on a multi-layered interplay of factors. Among these, disorders of lipid metabolism have emerged as an important area of investigation. Cancer cells are metabolically reprogrammed to promote their rapid growth, proliferation, and survival. This reprogramming is associated with significant changes at the level of lipids, mainly fatty acids (FA), as they play a critical role in maintaining cell structure, facilitating signaling pathways, and providing energy. These lipid-related changes help cancer cells meet the increased demands of continued growth and division while adapting to the tumor microenvironment. In this review, we examine lipid metabolism at different stages, including synthesis, transport, and oxidation, in the context of TC and the effects of obesity and hormones on TC development. Recent scientific efforts have revealed disturbances in lipid homeostasis that are specific to thyroid cancer, opening up potential avenues for early detection and targeted therapeutic interventions. Understanding the intricate metabolic pathways involved in FA metabolism may provide insights into potential interventions to prevent cancer progression and mitigate its effects on surrounding tissues.


Asunto(s)
Metabolismo de los Lípidos , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/etiología , Trastornos del Metabolismo de los Lípidos/metabolismo , Animales , Ácidos Grasos/metabolismo , Microambiente Tumoral , Transducción de Señal , Obesidad/metabolismo
2.
Front Endocrinol (Lausanne) ; 14: 1199291, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664829

RESUMEN

Purpose: Amino acids (AAs) play important physiological roles in living cells. Some amino acid changes in blood are specific for autoimmune disorders, and some are specific for thyroid cancer. The aims of this study were to profile AA metabolites in the serum of patients with papillary thyroid carcinoma (PTC0) without Hashimoto's thyroiditis (HT) and patients with PTC with HT (PTC1) and predict whether AA metabolites are associated with thyroid disease, thyroid hormone and thyroid autoantibodies. Methods: A total of 95 serum samples were collected, including 28 healthy controls (HCs), 28 PTC0 patients and 39 PTC1 patients. Serum samples were analyzed by high-performance liquid chromatography-triple stage quadrupole-mass spectrometry (HPLC-TSQ-MS), and twenty-one amino acids (AAs) were detected. Results: The serum concentration of glutamic acid was significantly elevated in PTC1 patients compared with PTC0 patients. Lysine was the second amino acid that differentiated these two groups of PTC patients. In addition, the serum concentrations of glycine, alanine and tyrosine were significantly reduced in both PTC patient groups compared to the HC group. These AAs were also correlated with thyroid hormones and antibodies. Five amino acid markers, namely, glycine, tyrosine, glutamic acid, glutamine and arginine, separated/distinguished PTC0 patients from healthy subjects, and eight AA markers, the same AAs as above without arginine but with alanine, leucine, valine and histidine, separated/distinguished PTC1 patients from healthy subjects based on ROC analysis. Conclusion: Compared with the HCs, changes in AAs in PTC0 and PTC1 patients showed similar patterns, suggesting the possibility of a common pathophysiological basis, which confirms preliminary research that PTC is significantly associated with pathologically confirmed HT. We found two AAs, lysine and alanine, that can perform diagnostic functions in distinguishing PTC1 from PTC0.


Asunto(s)
Enfermedad de Hashimoto , Neoplasias de la Tiroides , Humanos , Aminoácidos , Cáncer Papilar Tiroideo , Lisina , Alanina , Ácido Glutámico , Glicina , Tirosina , Enfermedad de Hashimoto/complicaciones , Arginina , Neoplasias de la Tiroides/complicaciones , Anticuerpos
3.
Front Med (Lausanne) ; 8: 730855, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34497816

RESUMEN

The skin is a flexible organ that forms a barrier between the environment and the body's interior; it is involved in the immune response, in protection and regulation, and is a dynamic environment in which skin lipids play an important role in maintaining homeostasis. The different layers of the skin differ in both the composition and amount of lipids. The epidermis displays the best characteristics in this respect. The main lipids in this layer are cholesterol, fatty acids (FAs) and ceramides. FAs can occur in free form and as components of complex molecules. The most poorly characterized FAs are very long-chain fatty acids (VLCFAs) and ultra long-chain fatty acids (ULCFAs). VLCFAs and ULCFAs are among the main components of ceramides and are part of the free fatty acid (FFA) fraction. They are most abundant in the brain, liver, kidneys, and skin. VLCFAs and ULCFAs are responsible for the rigidity and impermeability of membranes, forming the mechanically and chemically strong outer layer of cell membranes. Any changes in the composition and length of the carbon chains of FAs result in a change in their melting point and therefore a change in membrane permeability. One of the factors causing a decrease in the amount of VLCFAs and ULCFAs is an improper diet. Another much more important factor is mutations in the genes which code proteins involved in the metabolism of VLCFAs and ULCFAs-regarding their elongation, their attachment to ceramides and their transformation. These mutations have their clinical consequences in the form of inborn errors in metabolism and neurodegenerative disorders, among others. Some of them are accompanied by skin symptoms such as ichthyosis and ichthyosiform erythroderma. In the following review, the structure of the skin is briefly characterized and the most important lipid components of the skin are presented. The focus is also on providing an overview of selected proteins involved in the metabolism of VLCFAs and ULCFAs in the skin.

4.
Nutrients ; 12(3)2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32245049

RESUMEN

The Western diet can lead to alterations in cardiac function and increase cardiovascular risk, which can be reproduced in animal models by implementing a high-fat diet (HFD). However, the mechanism of these alterations is not fully understood and may be dependent on alterations in heart lipid composition. The aim of this study was to evaluate the effect of an HFD on the fatty acid (FA) composition of total lipids, as well as of various lipid fractions in the heart, and on heart function. C57BL/6 mice were fed an HFD or standard laboratory diet. The FA composition of chow, serum, heart and skeletal muscle tissues was measured by gas chromatography-mass spectrometry. Cardiac function was evaluated by ultrasonography. Our results showed an unexpected increase in polyunsaturated FAs (PUFAs) and a significant decrease in monounsaturated FAs (MUFAs) in the heart tissue of mice fed the HFD. For comparison, no such effects were observed in skeletal muscle or serum samples. Furthermore, we found that the largest increase in PUFAs was in the sphingolipid fraction, whereas the largest decrease in MUFAs was in the phospholipid and sphingomyelin fractions. The hearts of mice fed an HFD had an increased content of triacylglycerols. Moreover, the HFD treatment altered aortic flow pattern. We did not find significant changes in heart mass or oxidative stress markers between mice fed the HFD and standard diet. The above results suggest that alterations in FA composition in the heart may contribute to deterioration of heart function. A possible mechanism of this phenomenon is the alteration of sphingolipids and phospholipids in the fatty acid profile, which may change the physical properties of these lipids. Since phospho- and sphingolipids are the major components of cell membranes, alterations in their structures in heart cells can result in changes in cell membrane properties.


Asunto(s)
Dieta Alta en Grasa , Ácidos Grasos/metabolismo , Miocardio/metabolismo , Animales , Membrana Celular/metabolismo , Ácidos Grasos/análisis , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Función Cardíaca , Hidrólisis , Metabolismo de los Lípidos , Peroxidación de Lípido , Lípidos/análisis , Masculino , Ratones , Obesidad/etiología , Obesidad/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...