Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Basic Res Cardiol ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639887

RESUMEN

Hypertrophic cardiomyopathy (HCM) constitutes the most common genetic cardiac disorder. However, current pharmacotherapeutics are mainly symptomatic and only partially address underlying molecular mechanisms. Circular RNAs (circRNAs) are a recently discovered class of non-coding RNAs and emerged as specific and powerful regulators of cellular functions. By performing global circRNA-specific next generation sequencing in cardiac tissue of patients with hypertrophic cardiomyopathy compared to healthy donors, we identified circZFPM2 (hsa_circ_0003380). CircZFPM2, which derives from the ZFPM2 gene locus, is a highly conserved regulatory circRNA that is strongly induced in HCM tissue. In vitro loss-of-function experiments were performed in neonatal rat cardiomyocytes, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), and HCM-patient-derived hiPSC-CMs. A knockdown of circZFPM2 was found to induce cardiomyocyte hypertrophy and compromise mitochondrial respiration, leading to an increased production of reactive oxygen species and apoptosis. In contrast, delivery of recombinant circZFPM2, packaged in lipid-nanoparticles or using AAV-based overexpression, rescued cardiomyocyte hypertrophic gene expression and promoted cell survival. Additionally, HCM-derived cardiac organoids exhibited improved contractility upon CM-specific overexpression of circZFPM2. Multi-Omics analysis further promoted our hypothesis, showing beneficial effects of circZFPM2 on cardiac contractility and mitochondrial function. Collectively, our data highlight that circZFPM2 serves as a promising target for the treatment of cardiac hypertrophy including HCM.

2.
Nat Protoc ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548938

RESUMEN

A promising cell-therapy approach for heart failure aims at differentiating human pluripotent stem cells (hPSCs) into functional cardiomyocytes (CMs) in vitro to replace the disease-induced loss of patients' heart muscle cells in vivo. But many challenges remain for the routine clinical application of hPSC-derived CMs (hPSC-CMs), including good manufacturing practice (GMP)-compliant production strategies. This protocol describes the efficient generation of hPSC-CM aggregates in suspension culture, emphasizing process simplicity, robustness and GMP compliance. The strategy promotes clinical translation and other applications that require large numbers of CMs. Using a simple spinner-flask platform, this protocol is applicable to a broad range of users with general experience in handling hPSCs without extensive know-how in biotechnology. hPSCs are expanded in monolayer to generate the required cell numbers for process inoculation in suspension culture, followed by stirring-controlled formation of cell-only aggregates at a 300-ml scale. After 48 h at checkpoint (CP) 0, chemically defined cardiac differentiation is induced by WNT-pathway modulation through use of the glycogen-synthase kinase-3 inhibitor CHIR99021 (WNT agonist), which is replaced 24 h later by the chemical WNT-pathway inhibitor IWP-2. The exact application of the described process parameters is important to ensure process efficiency and robustness. After 10 d of differentiation (CP I), the production of ≥100 × 106 CMs is expected. Moreover, to 'uncouple' cell production from downstream applications, continuous maintenance of CM aggregates for up to 35 d in culture (CP II) is demonstrated without a reduction in CM content, supporting downstream logistics while potentially overcoming the requirement for cryopreservation.

3.
Stem Cell Res Ther ; 15(1): 89, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528578

RESUMEN

BACKGROUND: Human pluripotent stem cells (hPSCs) have an enormous therapeutic potential, but large quantities of cells will need to be supplied by reliable, economically viable production processes. The suspension culture (three-dimensional; 3D) of hPSCs in stirred tank bioreactors (STBRs) has enormous potential for fuelling these cell demands. In this study, the efficient long-term matrix-free suspension culture of hPSC aggregates is shown. METHODS AND RESULTS: STBR-controlled, chemical aggregate dissociation and optimized passage duration of 3 or 4 days promotes exponential hPSC proliferation, process efficiency and upscaling by a seed train approach. Intermediate high-density cryopreservation of suspension-derived hPSCs followed by direct STBR inoculation enabled complete omission of matrix-dependent 2D (two-dimensional) culture. Optimized 3D cultivation over 8 passages (32 days) cumulatively yielded ≈4.7 × 1015 cells, while maintaining hPSCs' pluripotency, differentiation potential and karyotype stability. Gene expression profiling reveals novel insights into the adaption of hPSCs to continuous 3D culture compared to conventional 2D controls. CONCLUSIONS: Together, an entirely matrix-free, highly efficient, flexible and automation-friendly hPSC expansion strategy is demonstrated, facilitating the development of good manufacturing practice-compliant closed-system manufacturing in large scale.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Pluripotentes , Humanos , Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Reactores Biológicos , Criopreservación
4.
J Pharmacol Toxicol Methods ; 124: 107471, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37690768

RESUMEN

Computer-based analysis of long-term electrocardiogram (ECG) monitoring in animal models represents a cost and time-consuming process as manual supervision is often performed to ensure accuracy in arrhythmia detection. Here, we investigate the performance and feasibility of three ECG interval analysis approaches A) attribute-based, B) attribute- and pattern recognition-based and C) combined approach with additional manual beat-to-beat analysis (gold standard) with regard to subsequent detection of ventricular arrhythmias (VA) and time consumption. ECG analysis was performed on ECG raw data of 5 male cynomolgus monkeys (1000 h total, 2 × 100 h per animal). Both approaches A and B overestimated the total number of arrhythmias compared to gold standard (+8.92% vs. +6.47%). With regard to correct classification of detected VA event numbers (accelerated idioventricular rhythms [AIVR], ventricular tachycardia [VT]) approach B revealed higher accuracy compared to approach A. Importantly, VA burden (% of time) was precisely depicted when using approach B (-1.13%), whereas approach A resulted in relevant undersensing of ventricular arrhythmias (-11.76%). Of note, approach A and B could be performed with significant less working time (-95% and - 91% working time) compared to gold standard. In sum, we show that a combination of attribute-based and pattern recognition analysis (approach B) can reproduce VA burden with acceptable accuracy without using manual supervision. Since this approach allowed analyses to be performed with distinct time saving it represents a valuable approach for cost and time efficient analysis of large preclinical ECG datasets.


Asunto(s)
Arritmias Cardíacas , Electrocardiografía , Animales , Masculino , Macaca fascicularis , Estudios de Factibilidad , Arritmias Cardíacas/diagnóstico , Computadores
5.
J Gen Physiol ; 155(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37656049

RESUMEN

Myosin heavy chain (MyHC) is the main determinant of contractile function. Human ventricular cardiomyocytes (CMs) predominantly express the ß-isoform. We previously demonstrated that ∼80% of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) express exclusively ß-MyHC after long-term culture on laminin-coated glass coverslips. Here, we investigated the impact of enzymatically detaching hESC-CMs after long-term culture and subsequently replating them for characterization of cellular function. We observed that force-related kinetic parameters, as measured in a micromechanical setup, resembled α- rather than ß-MyHC-expressing myofibrils, as well as changes in calcium transients. Single-cell immunofluorescence analysis revealed that replating hESC-CMs led to rapid upregulation of α-MyHC, as indicated by increases in exclusively α-MyHC- and in mixed α/ß-MyHC-expressing hESC-CMs. A comparable increase in heterogeneity of MyHC isoform expression was also found among individual human induced pluripotent stem cell (hiPSC)-derived CMs after replating. Changes in MyHC isoform expression and cardiomyocyte function induced by replating were reversible in the course of the second week after replating. Gene enrichment analysis based on RNA-sequencing data revealed changes in the expression profile of mechanosensation/-transduction-related genes and pathways, especially integrin-associated signaling. Accordingly, the integrin downstream mediator focal adhesion kinase (FAK) promoted ß-MyHC expression on a stiff matrix, further validating gene enrichment analysis. To conclude, detachment and replating induced substantial changes in gene expression, MyHC isoform composition, and function of long-term cultivated human stem cell-derived CMs, thus inducing alterations in mechanosensation/-transduction, that need to be considered, particularly for downstream in vitro assays.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miosinas , Cadenas Pesadas de Miosina/genética , Integrinas
6.
Exp Mol Med ; 55(9): 2005-2024, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653039

RESUMEN

The lack of physiological parity between 2D cell culture and in vivo culture has led to the development of more organotypic models, such as organoids. Organoid models have been developed for a number of tissues, including the liver. Current organoid protocols are characterized by a reliance on extracellular matrices (ECMs), patterning in 2D culture, costly growth factors and a lack of cellular diversity, structure, and organization. Current hepatic organoid models are generally simplistic and composed of hepatocytes or cholangiocytes, rendering them less physiologically relevant compared to native tissue. We have developed an approach that does not require 2D patterning, is ECM independent, and employs small molecules to mimic embryonic liver development that produces large quantities of liver-like organoids. Using single-cell RNA sequencing and immunofluorescence, we demonstrate a liver-like cellular repertoire, a higher order cellular complexity, presenting with vascular luminal structures, and a population of resident macrophages: Kupffer cells. The organoids exhibit key liver functions, including drug metabolism, serum protein production, urea synthesis and coagulation factor production, with preserved post-translational modifications such as N-glycosylation and functionality. The organoids can be transplanted and maintained long term in mice producing human albumin. The organoids exhibit a complex cellular repertoire reflective of the organ and have de novo vascularization and liver-like function. These characteristics are a prerequisite for many applications from cellular therapy, tissue engineering, drug toxicity assessment, and disease modeling to basic developmental biology.


Asunto(s)
Hígado , Organoides , Humanos , Animales , Ratones , Ingeniería de Tejidos , Hepatocitos , Células Cultivadas
7.
Dis Model Mech ; 16(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36825553

RESUMEN

The heart is the first functional organ established during embryogenesis. Investigating heart development and disease is a fascinating and crucial field of research because cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. Therefore, there is great interest in establishing in vitro models for recapitulating both physiological and pathological aspects of human heart development, tissue function and malfunction. Derived from pluripotent stem cells, a large variety of three-dimensional cardiac in vitro models have been introduced in recent years. In this At a Glance article, we discuss the available methods to generate such models, grouped according to the following classification: cardiac organoids, cardiac microtissues and engineered cardiac tissues. For these models, we provide a systematic overview of their applications for disease modeling and therapeutic development, as well as their advantages and limitations to assist scientists in choosing the most suitable model for their research purpose.


Asunto(s)
Enfermedades Cardiovasculares , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Corazón/fisiología , Organoides , Ingeniería de Tejidos/métodos
8.
Nat Commun ; 13(1): 5637, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163190

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal disease with limited treatment options. In this study, we focus on the properties of airway basal cells (ABC) obtained from patients with IPF (IPF-ABC). Single cell RNA sequencing (scRNAseq) of bronchial brushes revealed extensive reprogramming of IPF-ABC towards a KRT17high PTENlow dedifferentiated cell type. In the 3D organoid model, compared to ABC obtained from healthy volunteers, IPF-ABC give rise to more bronchospheres, de novo bronchial structures resembling lung developmental processes, induce fibroblast proliferation and extracellular matrix deposition in co-culture. Intratracheal application of IPF-ABC into minimally injured lungs of Rag2-/- or NRG mice causes severe fibrosis, remodeling of the alveolar compartment, and formation of honeycomb cyst-like structures. Connectivity MAP analysis of scRNAseq of bronchial brushings suggested that gene expression changes in IPF-ABC can be reversed by SRC inhibition. After demonstrating enhanced SRC expression and activity in these cells, and in IPF lungs, we tested the effects of saracatinib, a potent SRC inhibitor previously studied in humans. We demonstrate that saracatinib modified in-vitro and in-vivo the profibrotic changes observed in our 3D culture system and novel mouse xenograft model.


Asunto(s)
Fibrosis Pulmonar Idiopática , Animales , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibrosis , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Ratones , Fenotipo
9.
Mol Ther Methods Clin Dev ; 26: 84-94, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-35795779

RESUMEN

Drug-inducible suicide systems may help to minimize risks of human induced pluripotent stem cell (hiPSC) therapies. Recent research challenged the usefulness of such systems since rare drug-resistant subclones were observed. We have introduced a drug-inducible Caspase 9 suicide system (iCASP9) into the AAVS1 safe-harbor locus of hiPSCs. In these cells, apoptosis could be efficiently induced in vitro. After transplantation into mice, drug treatment generally led to rapid elimination of teratomas, but single animals subsequently formed tumor tissue from monoallelic iCASP9 hiPSCs. Very rare drug-resistant subclones of monoallelic iCASP9 hiPSCs appeared in vitro with frequencies of ∼ 3 × 10-8. Besides transgene elimination, presumably via loss of heterozygosity (LoH), silencing via aberrant promoter methylation was identified as a major underlying mechanism. In contrast to monoallelic iCASP9 hiPSCs, no escapees from biallelic iCASP9 cells were observed after treatment of up to 0.8 billion hiPSCs. The highly increased safety level provided by biallelic integration of the iCASP9 system may substantially contribute to the safety level of iPSC-based therapies.

10.
Development ; 149(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35686629

RESUMEN

The specification of distinct cardiac lineages occurs before chamber formation and acquisition of bona fide atrial or ventricular identity. However, the mechanisms underlying these early specification events remain poorly understood. Here, we performed single cell analysis at the murine cardiac crescent, primitive heart tube and heart tube stages to uncover the transcriptional mechanisms underlying formation of atrial and ventricular cells. We find that progression towards differentiated cardiomyocytes occurs primarily based on heart field progenitor identity, and that progenitors contribute to ventricular or atrial identity through distinct differentiation mechanisms. We identify new candidate markers that define such differentiation processes and examine their expression dynamics using computational lineage trajectory methods. We further show that exposure to exogenous retinoic acid causes defects in ventricular chamber size, dysregulation in FGF signaling and a shunt in differentiation towards orthogonal lineages. Retinoic acid also causes defects in cell-cycle exit resulting in formation of hypomorphic ventricles. Collectively, our data identify, at a single cell level, distinct lineage trajectories during cardiac specification and differentiation, and the precise effects of manipulating cardiac progenitor patterning via retinoic acid signaling.


Asunto(s)
Corazón , Tretinoina , Animales , Diferenciación Celular , Atrios Cardíacos , Ventrículos Cardíacos/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Tretinoina/metabolismo , Tretinoina/farmacología
11.
Cancers (Basel) ; 14(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35205731

RESUMEN

Targeted therapies are currently considered the best cost-benefit anti-cancer treatment. In hematological malignancies, however, relapse rates and non-hematopoietic side effects including cardiotoxicity remain high. Here, we describe significant heart damage due to advanced acute lymphoblastic leukemia (ALL) with t(9;22) encoding the bcr-abl oncogene (BCR-ABL+ ALL) in murine xenotransplantation models. Echocardiography reveals severe cardiac dysfunction with impaired left ventricular function and reduced heart and cardiomyocyte dimensions associated with increased apoptosis. This cardiac damage is fully reversible, but cardiac recovery depends on the therapy used to induce ALL remission. Chemotherapy-free combination therapy with dasatinib (DAS), venetoclax (VEN) (targeting the BCR-ABL oncoprotein and mitochondrial B-cell CLL/Lymphoma 2 (BCL2), respectively), and dexamethasone (DEX) can fully revert cardiac defects, whereas the depletion of otherwise identical ALL in a genetic model using herpes simplex virus type 1 thymidine kinase (HSV-TK) cannot. Mechanistically, dexamethasone induces a pro-apoptotic BCL2-interacting mediator of cell death (BIM) expression and apoptosis in ALL cells but enhances pro-survival B-cell lymphoma extra-large (BCLXL) expression in cardiomyocytes and clinical recovery with the reversion of cardiac atrophy. These data demonstrate that therapies designed to optimize apoptosis induction in ALL may circumvent cardiac on-target side effects and may even activate cardiac recovery. In the future, combining the careful clinical monitoring of cardiotoxicity in leukemic patients with the further characterization of organ-specific side effects and signaling pathways activated by malignancy and/or anti-tumor therapies seems reasonable.

12.
Nat Protoc ; 17(2): 513-539, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35039668

RESUMEN

Macrophages derived from human induced pluripotent stem cells (iPSCs) have the potential to enable the development of cell-based therapies for numerous disease conditions. We here provide a detailed protocol for the mass production of iPSC-derived macrophages (iPSC-Mac) in scalable suspension culture on an orbital shaker or in stirred-tank bioreactors (STBRs). This strategy is straightforward, robust and characterized by the differentiation of primed iPSC aggregates into 'myeloid-cell-forming-complex' intermediates by means of a minimal cytokine cocktail. In contrast to the 'batch-like differentiation approaches' established for other iPSC-derived lineages, myeloid-cell-forming-complex-intermediates are stably maintained in suspension culture and continuously generate functional and highly pure iPSC-Mac. Employing a culture volume of 120 ml in the STBR platform, ~1-4 × 107 iPSC-Mac can be harvested at weekly intervals for several months. The STBR technology allows for real-time monitoring of crucial process parameters such as biomass, pH, dissolved oxygen, and nutrition levels; the system also promotes systematic process development, optimization and linear upscaling. The process duration, from the expansion of iPSC until the first iPSC-Mac harvest, is 28 d. Successful application of the protocol requires expertise in pluripotent stem cell culture, differentiation and analytical methods, such as flow cytometry. Fundamental know-how in biotechnology is also advantageous to run the process in the STBR platform. The continuous, scalable production of well-defined iPSC-Mac populations is highly relevant to various fields, ranging from developmental biology, immunology and cell therapies to industrial applications for drug safety and discovery.


Asunto(s)
Células Madre Pluripotentes Inducidas
13.
Bioengineering (Basel) ; 8(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34940366

RESUMEN

The proper function of cardiomyocytes (CMs) is highly related to the Z-disc, which has a pivotal role in orchestrating the sarcomeric cytoskeletal function. To better understand Z-disc related cardiomyopathies, novel models of Z-disc damage have to be developed. Human pluripotent stem cell (hPSC)-derived CMs can serve as an in vitro model to better understand the sarcomeric cytoskeleton. A femtosecond laser system can be applied for localized and defined damage application within cells as single Z-discs can be removed. We have investigated the changes in force generation via traction force microscopy, and in gene expression after Z-disc manipulation in hPSC-derived CMs. We observed a significant weakening of force generation after removal of a Z-disc. However, no significant changes of the number of contractions after manipulation were detected. The stress related gene NF-kB was significantly upregulated. Additionally, α-actinin (ACTN2) and filamin-C (FLNc) were upregulated, pointing to remodeling of the Z-disc and the sarcomeric cytoskeleton. Ultimately, cardiac troponin I (TNNI3) and cardiac muscle troponin T (TNNT2) were significantly downregulated. Our results allow a better understanding of transcriptional coupling of Z-disc damage and the relation of damage to force generation and can therefore finally pave the way to novel therapies of sarcomeric disorders.

14.
STAR Protoc ; 2(4): 100988, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34917976

RESUMEN

The routine therapeutic and industrial applications of human pluripotent stem cells (hPSCs) require their constant mass supply by robust, efficient, and economically viable bioprocesses. Our protocol describes the fully controlled expansion of hPSCs in stirred tank bioreactors (STBRs) enabling cell densities of 35 × 106 cells/mL while reducing culture medium consumption by 75%. This is achieved by in silico process modeling and computable upscaling. We provide a detailed blueprint for systematic process development of hPSCs and their progenies. For complete details on the use and execution of this protocol, please refer to Manstein et al. (2021).


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Simulación por Computador , Células Madre Pluripotentes/citología , Células Cultivadas , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Humanos
15.
Nat Protoc ; 16(12): 5652-5672, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34759383

RESUMEN

Heart-forming organoids (HFOs) derived from human pluripotent stem cells (hPSCs) are a complex, highly structured in vitro model of early heart, foregut and vasculature development. The model represents a potent tool for various applications, including teratogenicity studies, gene function analysis and drug discovery. Here, we provide a detailed protocol describing how to form HFOs within 14 d. In an initial 4 d preculture period, hPSC aggregates are individually formed in a 96-well format and then Matrigel-embedded. Subsequently, the chemical WNT pathway modulators CHIR99021 and IWP2 are applied, inducing directed differentiation. This highly robust protocol can be used on many different hPSC lines and be combined with manipulation technologies such as gene targeting and drug testing. HFO formation can be assessed by numerous complementary methods, ranging from various imaging approaches to gene expression studies. Here, we highlight the flow cytometry-based analysis of individual HFOs, enabling the quantitative monitoring of lineage formation.


Asunto(s)
Citometría de Flujo/métodos , Organogénesis/genética , Organoides/citología , Células Madre Pluripotentes/citología , Andamios del Tejido , Vía de Señalización Wnt/efectos de los fármacos , Benzotiazoles/farmacología , Diferenciación Celular/efectos de los fármacos , Colágeno/química , Colágeno/farmacología , Combinación de Medicamentos , Descubrimiento de Drogas/métodos , Marcación de Gen/métodos , Corazón/diagnóstico por imagen , Corazón/efectos de los fármacos , Humanos , Laminina/química , Laminina/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/fisiología , Organogénesis/efectos de los fármacos , Organoides/diagnóstico por imagen , Organoides/efectos de los fármacos , Organoides/metabolismo , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Proteoglicanos/química , Proteoglicanos/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Teratógenos/toxicidad
16.
Blood Adv ; 5(23): 5190-5201, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34649271

RESUMEN

Primary or secondary immunodeficiencies are characterized by disruption of cellular and humoral immunity. Respiratory infections are a major cause of morbidity and mortality among immunodeficient or immunocompromised patients, with Staphylococcus aureus being a common offending organism. We propose here an adoptive macrophage transfer approach aiming to enhance impaired pulmonary immunity against S aureus. Our studies, using human-induced pluripotent stem cell-derived macrophages (iMφs), demonstrate efficient antimicrobial potential against methicillin-sensitive and methicillin-resistant clinical isolates of S aureus. Using an S aureus airway infection model in immunodeficient mice, we demonstrate that the adoptive transfer of iMφs is able to reduce the bacterial load more than 10-fold within 20 hours. This effect was associated with reduced granulocyte infiltration and less damage in lung tissue of transplanted animals. Whole transcriptome analysis of iMφs compared with monocyte-derived macrophages indicates a more profound upregulation of inflammatory genes early after infection and faster normalization 24 hours postinfection. Our data demonstrate high therapeutic efficacy of iMφ-based immunotherapy against S aureus infections and offer an alternative treatment strategy for immunodeficient or immunocompromised patients.


Asunto(s)
Células Madre Pluripotentes Inducidas , Infecciones del Sistema Respiratorio , Infecciones Estafilocócicas , Animales , Humanos , Macrófagos , Ratones , Infecciones Estafilocócicas/terapia , Staphylococcus aureus
17.
Pharmaceutics ; 13(7)2021 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-34371788

RESUMEN

In this work, a method for the preparation of the highly lipophilic labeling synthon [89Zr]Zr(oxinate)4 was optimized for the radiolabeling of liposomes and human induced pluripotent stem cells (hiPSCs). The aim was to establish a robust and reliable labeling protocol for enabling up to one week positron emission tomography (PET) tracing of lipid-based nanomedicines and transplanted or injected cells, respectively. [89Zr]Zr(oxinate)4 was prepared from oxine (8-hydroxyquinoline) and [89Zr]Zr(OH)2(C2O4). Earlier introduced liquid-liquid extraction methods were simplified by the optimization of buffering, pH, temperature and reaction times. For quality control, thin-layer chromatography (TLC), size-exclusion chromatography (SEC) and centrifugation were employed. Subsequently, the 89Zr-complex was incorporated into liposome formulations. PET/CT imaging of 89Zr-labeled liposomes was performed in healthy mice. Cell labeling was accomplished in PBS using suspensions of 3 × 106 hiPSCs, each. [89Zr]Zr(oxinate)4 was synthesized in very high radiochemical yields of 98.7% (96.8% ± 2.8%). Similarly, high internalization rates (≥90%) of [89Zr]Zr(oxinate)4 into liposomes were obtained over an 18 h incubation period. MicroPET and biodistribution studies confirmed the labeled nanocarriers' in vivo stability. Human iPSCs incorporated the labeling agent within 30 min with ~50% efficiency. Prolonged PET imaging is an ideal tool in the development of lipid-based nanocarriers for drug delivery and cell therapies. To this end, a reliable and reproducible 89Zr radiolabeling method was developed and tested successfully in a model liposome system and in hiPSCs alike.

19.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918735

RESUMEN

Stem cells secrete paracrine factors including extracellular vesicles (EVs) which can mediate cellular communication and support the regeneration of injured tissues. Reduced oxygen (hypoxia) as a key regulator in development and regeneration may influence cellular communication via EVs. We asked whether hypoxic conditioning during human induced pluripotent stem cell (iPSC) culture effects their EV quantity, quality or EV-based angiogenic potential. We produced iPSC-EVs from large-scale culture-conditioned media at 1%, 5% and 18% air oxygen using tangential flow filtration (TFF), with or without subsequent concentration by ultracentrifugation (TUCF). EVs were quantified by tunable resistive pulse sensing (TRPS), characterized according to MISEV2018 guidelines, and analyzed for angiogenic potential. We observed superior EV recovery by TFF compared to TUCF. We confirmed hypoxia efficacy by HIF-1α stabilization and pimonidazole hypoxyprobe. EV quantity did not differ significantly at different oxygen conditions. Significantly elevated angiogenic potential was observed for iPSC-EVs derived from 1% oxygen culture by TFF or TUCF as compared to EVs obtained at higher oxygen or the corresponding EV-depleted soluble factor fractions. Data thus demonstrate that cell-culture oxygen conditions and mode of EV preparation affect iPSC-EV function. We conclude that selecting appropriate protocols will further improve production of particularly potent iPSC-EV-based therapeutics.


Asunto(s)
Vesículas Extracelulares/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Neovascularización Fisiológica , Transporte Biológico , Biomarcadores , Hipoxia de la Célula , Autorrenovación de las Células , Células Cultivadas , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Medicina Regenerativa/métodos
20.
Stem Cells Transl Med ; 10(7): 1063-1080, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33660952

RESUMEN

To harness the full potential of human pluripotent stem cells (hPSCs) we combined instrumented stirred tank bioreactor (STBR) technology with the power of in silico process modeling to overcome substantial, hPSC-specific hurdles toward their mass production. Perfused suspension culture (3D) of matrix-free hPSC aggregates in STBRs was applied to identify and control process-limiting parameters including pH, dissolved oxygen, glucose and lactate levels, and the obviation of osmolality peaks provoked by high density culture. Media supplements promoted single cell-based process inoculation and hydrodynamic aggregate size control. Wet lab-derived process characteristics enabled predictive in silico modeling as a new rational for hPSC cultivation. Consequently, hPSC line-independent maintenance of exponential cell proliferation was achieved. The strategy yielded 70-fold cell expansion in 7 days achieving an unmatched density of 35 × 106 cells/mL equivalent to 5.25 billion hPSC in 150 mL scale while pluripotency, differentiation potential, and karyotype stability was maintained. In parallel, media requirements were reduced by 75% demonstrating the outstanding increase in efficiency. Minimal input to our in silico model accurately predicts all main process parameters; combined with calculation-controlled hPSC aggregation kinetics, linear process upscaling is also enabled and demonstrated for up to 500 mL scale in an independent bioreactor system. Thus, by merging applied stem cell research with recent knowhow from industrial cell fermentation, a new level of hPSC bioprocessing is revealed fueling their automated production for industrial and therapeutic applications.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Pluripotentes , Reactores Biológicos , Diferenciación Celular , Simulación por Computador , Medios de Cultivo , Humanos , Células Madre Pluripotentes/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...