Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurophotonics ; 11(3): 035006, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39114857

RESUMEN

Significance: Light-sheet microscopy is a powerful imaging technique that achieves optical sectioning via selective illumination of individual sample planes. However, when the sample contains opaque or scattering tissues, the incident light sheet may not be able to uniformly excite the entire sample. For example, in the context of larval zebrafish whole-brain imaging, occlusion by the eyes prevents access to a significant portion of the brain during common implementations using unidirectional illumination. Aim: We introduce mirror-assisted light-sheet microscopy (mLSM), a simple inexpensive method that can be implemented on existing digitally scanned light-sheet setups by adding a single optical element-a mirrored micro-prism. The prism is placed near the sample to generate a second excitation path for accessing previously obstructed regions. Approach: Scanning the laser beam onto the mirror generates a second, reflected illumination path that circumvents the occlusion. Online tuning of the scanning and laser power waveforms enables near uniform sample excitation with dual illumination. Results: mLSM produces cellular-resolution images of zebrafish brain regions inaccessible to unidirectional illumination. The imaging quality in regions illuminated by the direct or reflected sheet is adjustable by translating the excitation objective. The prism does not interfere with visually guided behavior. Conclusions: mLSM presents an easy-to-implement, cost-effective way to upgrade an existing light-sheet system to obtain more imaging data from a biological sample.

2.
Elife ; 122023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36943029

RESUMEN

Response variability is an essential and universal feature of sensory processing and behavior. It arises from fluctuations in the internal state of the brain, which modulate how sensory information is represented and transformed to guide behavioral actions. In part, brain state is shaped by recent network activity, fed back through recurrent connections to modulate neuronal excitability. However, the degree to which these interactions influence response variability and the spatial and temporal scales across which they operate, are poorly understood. Here, we combined population recordings and modeling to gain insights into how neuronal activity modulates network state and thereby impacts visually evoked activity and behavior. First, we performed cellular-resolution calcium imaging of the optic tectum to monitor ongoing activity, the pattern of which is both a cause and consequence of changes in network state. We developed a minimal network model incorporating fast, short range, recurrent excitation and long-lasting, activity-dependent suppression that reproduced a hallmark property of tectal activity - intermittent bursting. We next used the model to estimate the excitability state of tectal neurons based on recent activity history and found that this explained a portion of the trial-to-trial variability in visually evoked responses, as well as spatially selective response adaptation. Moreover, these dynamics also predicted behavioral trends such as selective habituation of visually evoked prey-catching. Overall, we demonstrate that a simple recurrent interaction motif can be used to estimate the effect of activity upon the incidental state of a neural network and account for experience-dependent effects on sensory encoding and visually guided behavior.


Asunto(s)
Neuronas , Colículos Superiores , Colículos Superiores/fisiología , Neuronas/fisiología , Vías Visuales/fisiología
3.
Nat Commun ; 11(1): 5908, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33219219

RESUMEN

Mice and rats are widely used to explore mechanisms of mammalian social behavior in health and disease, raising the question whether they actually differ in their social behavior. Here we address this question by directly comparing social investigation behavior between two mouse and rat strains used most frequently for behavioral studies and as models of neuropathological conditions: C57BL/6 J mice and Sprague Dawley (SD) rats. Employing novel experimental systems for behavioral analysis of both subjects and stimuli during the social preference test, we reveal marked differences in behavioral dynamics between the strains, suggesting stronger and faster induction of social motivation in SD rats. These different behavioral patterns, which correlate with distinctive c-Fos expression in social motivation-related brain areas, are modified by competition with non-social rewarding stimuli, in a strain-specific manner. Thus, these two strains differ in their social behavior, which should be taken into consideration when selecting an appropriate model organism.


Asunto(s)
Conducta Animal/fisiología , Motivación/fisiología , Conducta Social , Animales , Encéfalo/metabolismo , Inmunohistoquímica/métodos , Sistema Límbico/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Modelos Teóricos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Recompensa , Especificidad de la Especie
4.
eNeuro ; 6(2)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001574

RESUMEN

The giant fiber system (GFS) is a multi-component neuronal pathway mediating rapid escape response in the adult fruit-fly Drosophila melanogaster, usually in the face of a threatening visual stimulus. Two branches of the circuit promote the response by stimulating an escape jump followed by flight initiation. A recent work demonstrated an age-associated decline in the speed of signal propagation through the circuit, measured as the stimulus-to-muscle depolarization response latency. The decline is likely due to the diminishing number of inter-neuronal gap junctions in the GFS of ageing flies. In this work, we presented a realistic conductance-based, computational model of the GFS that recapitulates the experimental results and identifies some of the critical anatomical and physiological components governing the circuit's response latency. According to our model, anatomical properties of the GFS neurons have a stronger impact on the transmission than neuronal membrane conductance densities. The model provides testable predictions for the effect of experimental interventions on the circuit's performance in young and ageing flies.


Asunto(s)
Envejecimiento/fisiología , Conducta Animal/fisiología , Encéfalo/fisiología , Drosophila melanogaster/fisiología , Uniones Comunicantes , Interneuronas , Modelos Neurológicos , Neuronas Motoras , Músculo Esquelético/fisiología , Tiempo de Reacción/fisiología , Animales , Simulación por Computador , Fenómenos Electrofisiológicos , Interneuronas/fisiología , Neuronas Motoras/fisiología , Vías Nerviosas/fisiología
5.
Front Comput Neurosci ; 11: 85, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28970791

RESUMEN

Changes in intracellular Na+ concentration ([Na+]i) are rarely taken into account when neuronal activity is examined. As opposed to Ca2+, [Na+]i dynamics are strongly affected by longitudinal diffusion, and therefore they are governed by the morphological structure of the neurons, in addition to the localization of influx and efflux mechanisms. Here, we examined [Na+]i dynamics and their effects on neuronal computation in three multi-compartmental neuronal models, representing three distinct cell types: accessory olfactory bulb (AOB) mitral cells, cortical layer V pyramidal cells, and cerebellar Purkinje cells. We added [Na+]i as a state variable to these models, and allowed it to modulate the Na+ Nernst potential, the Na+-K+ pump current, and the Na+-Ca2+ exchanger rate. Our results indicate that in most cases [Na+]i dynamics are significantly slower than [Ca2+]i dynamics, and thus may exert a prolonged influence on neuronal computation in a neuronal type specific manner. We show that [Na+]i dynamics affect neuronal activity via three main processes: reduction of EPSP amplitude in repeatedly active synapses due to reduction of the Na+ Nernst potential; activity-dependent hyperpolarization due to increased activity of the Na+-K+ pump; specific tagging of active synapses by extended Ca2+ elevation, intensified by concurrent back-propagating action potentials or complex spikes. Thus, we conclude that [Na+]i dynamics should be considered whenever synaptic plasticity, extensive synaptic input, or bursting activity are examined.

6.
J Neurosci ; 37(10): 2656-2672, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28148726

RESUMEN

Rhythmic neuronal activity of multiple frequency bands has been described in many brain areas and attributed to numerous brain functions. Among these, little is known about the mechanism and role of infra-slow oscillations, which have been demonstrated recently in the mouse accessory olfactory bulb (AOB). Along with prolonged responses to stimuli and distinct network connectivity, they inexplicably affect the AOB processing of social relevant stimuli. Here, we show that assemblies of AOB mitral cells are synchronized by lateral interactions through chemical and electrical synapses. Using a network model, we demonstrate that the synchronous oscillations in these assemblies emerge from interplay between intrinsic membrane properties and network connectivity. As a consequence, the AOB network topology, in which each mitral cell receives input from multiple glomeruli, enables integration of chemosensory stimuli over extended time scales by interglomerular synchrony of infra-slow bursting. These results provide a possible functional significance for the distinct AOB physiology and topology. Beyond the AOB, this study presents a general model for synchronous infra-slow bursting in neuronal networks.SIGNIFICANCE STATEMENT Infra-slow rhythmic neuronal activity with a very long (>10 s) duration has been described in many brain areas, but little is known about the role of this activity and the mechanisms that produce it. Here, we combine experimental and computational methods to show that synchronous infra-slow bursting activity in mitral cells of the mouse accessory olfactory bulb (AOB) emerges from interplay between intracellular dynamics and network connectivity. In this novel mechanism, slow intracellular Na+ dynamics endow AOB mitral cells with a weak tendency to burst, which is further enhanced and stabilized by chemical and electrical synapses between them. Combined with the unique topology of the AOB network, infra-slow bursting enables integration and binding of multiple chemosensory stimuli over a prolonged time scale.


Asunto(s)
Potenciales de Acción/fisiología , Relojes Biológicos/fisiología , Sincronización Cortical/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Animales , Conectoma/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología
7.
PLoS Biol ; 13(12): e1002319, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26674618

RESUMEN

Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here, we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. We show that mitral cells in the accessory olfactory bulb (AOB), which plays a major role in mammalian social behavior, may respond to a brief sensory stimulation with persistent firing. By combining electrical recordings, Ca2+ and Na+ imaging, and realistic computational modeling, we explored the mechanisms underlying the persistent activity in AOB mitral cells. We found that the exceptionally slow inward current that underlies this activity is governed by prolonged dynamics of intracellular Na+ ([Na+]i), which affects neuronal electrical activity via several pathways. Specifically, elevated dendritic [Na+]i reverses the Na+-Ca2+ exchanger activity, thus modifying the [Ca2+]i set-point. This process, which relies on ubiquitous membrane mechanisms, is likely to play a role in other neuronal types in various brain regions.


Asunto(s)
Dendritas/metabolismo , Modelos Neurológicos , Proteínas del Tejido Nervioso/metabolismo , Conducción Nerviosa , Neuronas/metabolismo , Bulbo Olfatorio/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Biología Computacional/métodos , Fenómenos Electrofisiológicos , Femenino , Activación del Canal Iónico , Cinética , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microscopía Fluorescente , Microscopía por Video , Neuronas/citología , Bulbo Olfatorio/citología , Análisis de la Célula Individual , Organismos Libres de Patógenos Específicos
8.
Front Cell Neurosci ; 8: 432, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25642164

RESUMEN

Social interactions between mammalian conspecifics rely heavily on molecular communication via the main and accessory olfactory systems. These two chemosensory systems show high similarity in the organization of information flow along their early stages: social chemical cues are detected by the sensory neurons of the main olfactory epithelium and the vomeronasal organ. These neurons then convey sensory information to the main (MOB) and accessory (AOB) olfactory bulbs, respectively, where they synapse upon mitral cells that project to higher brain areas. Yet, the functional difference between these two chemosensory systems remains unclear. We have previously shown that MOB and AOB mitral cells exhibit very distinct intrinsic biophysical properties leading to different types of information processing. Specifically, we found that unlike MOB mitral cells, AOB neurons display persistent firing responses to strong stimuli. These prolonged responses are mediated by long-lasting calcium-activated non-selective cationic current (Ican). In the current study we further examined the firing characteristics of these cells and their modulation by several neuromodulators. We found that AOB mitral cells display transient depolarizing afterpotentials (DAPs) following moderate firing. These DAPs are not found in MOB mitral cells that show instead robust hyperpolarizing afterpotentials. Unlike Ican, the DAPs of AOB mitral cells are activated by low levels of intracellular calcium and are relatively insensitive to flufenamic acid. Moreover, the cholinergic agonist carbachol exerts opposite effects on the persistent firing and DAPs of AOB mitral cells. We conclude that these phenomena are mediated by distinct biophysical mechanisms that may serve to mediate different types of information processing in the AOB at distinct brain states.

9.
J Neurosci ; 32(18): 6251-62, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22553031

RESUMEN

Many mammals rely on pheromones for mediating social interactions. Recent studies indicate that both the main olfactory system (MOS) and accessory olfactory system (AOS) detect and process pheromonal stimuli, yet the functional difference between these two chemosensory systems remains unclear. We hypothesized that the main functional distinction between the MOS and AOS is the type of sensory information processing performed by each system. Here we compared the electrophysiological responses of mitral cells recorded from the accessory olfactory bulb (AOB) and main olfactory bulb (MOB) in acute mouse brain slices to various stimuli and found them markedly different. The response of MOB mitral cells to brief (0.1 ms, 1-100 V) stimulation of their sensory afferents remained transient regardless of stimulus strength, whereas sufficiently strong stimuli evoked sustained firing in AOB mitral cells lasting up to several minutes. Using EPSC-like current injections (10-100 pA, 10 ms rise time constant, 5 s decay time constant) in the presence of various synaptic blockers (picrotoxin, CGP55845, APV, DNQX, E4CPG, and MSPG), we demonstrated that this difference is attributable to distinct intrinsic properties of the two neuronal populations. The AOB sustained responses were found to be mediated by calcium-activated nonselective cationic current induced by transient intense firing. This current was found to be at least partially mediated by TRPM4 channels activated by calcium influx. We hypothesize that the sustained activity of the AOS induces a new sensory state in the animal, reflecting its social context.


Asunto(s)
Potenciales de Acción/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , Bulbo Olfatorio/fisiología , Olfato/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA