Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1249405, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077397

RESUMEN

Background: Narcolepsy Type I (NT1) is a rare, life-long sleep disorder arising as a consequence of the extensive destruction of orexin-producing hypothalamic neurons. The mechanisms involved in the destruction of orexin neurons are not yet elucidated but the association of narcolepsy with environmental triggers and genetic susceptibility (strong association with the HLA, TCRs and other immunologically-relevant loci) implicates an immuno-pathological process. Several studies in animal models and on human samples have suggested that T-cells are the main pathogenic culprits. Methods: RNA sequencing was performed on four CD4 and CD8 T-cell subsets (naive, effector, effector memory and central memory) sorted by flow cytometry from peripheral blood mononuclear cells (PBMCs) of NT1 patients and HLA-matched healthy donors as well as (age- and sex-) matched individuals suffering from other sleep disorders (OSD). The RNAseq analysis was conducted by comparing the transcriptome of NT1 patients to that of healthy donors and other sleep disorder patients (collectively referred to as the non-narcolepsy controls) in order to identify NT1-specific genes and pathways. Results: We determined NT1-specific differentially expressed genes, several of which are involved in tubulin arrangement found in CD4 (TBCB, CCT5, EML4, TPGS1, TPGS2) and CD8 (TTLL7) T cell subsets, which play a role in the immune synapse formation and TCR signaling. Furthermore, we identified genes (GZMB, LTB in CD4 T-cells and NLRP3, TRADD, IL6, CXCR1, FOXO3, FOXP3 in CD8 T-cells) and pathways involved in various aspects of inflammation and inflammatory response. More specifically, the inflammatory profile was identified in the "naive" subset of CD4 and CD8 T-cell. Conclusion: We identified NT1-specific differentially expressed genes, providing a cell-type and subset specific catalog describing their functions in T-cells as well as their potential involvement in NT1. Several genes and pathways identified are involved in the formation of the immune synapse and TCR activation as well as inflammation and the inflammatory response. An inflammatory transcriptomic profile was detected in both "naive" CD4 and CD8 T-cell subsets suggesting their possible involvement in the development or progression of the narcoleptic process.


Asunto(s)
Leucocitos Mononucleares , Narcolepsia , Animales , Humanos , Orexinas/genética , Orexinas/metabolismo , Leucocitos Mononucleares/metabolismo , Linfocitos T CD8-positivos , Narcolepsia/genética , Receptores de Antígenos de Linfocitos T/genética , Perfilación de la Expresión Génica , Inflamación
2.
Sci Data ; 10(1): 369, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291142

RESUMEN

Inspired by the production of reference data sets in the Genome in a Bottle project, we sequenced one Charolais heifer with different technologies: Illumina paired-end, Oxford Nanopore, Pacific Biosciences (HiFi and CLR), 10X Genomics linked-reads, and Hi-C. In order to generate haplotypic assemblies, we also sequenced both parents with short reads. From these data, we built two haplotyped trio high quality reference genomes and a consensus assembly, using up-to-date software packages. The assemblies obtained using PacBio HiFi reaches a size of 3.2 Gb, which is significantly larger than the 2.7 Gb ARS-UCD1.2 reference. The BUSCO score of the consensus assembly reaches a completeness of 95.8%, among highly conserved mammal genes. We also identified 35,866 structural variants larger than 50 base pairs. This assembly is a contribution to the bovine pangenome for the "Charolais" breed. These datasets will prove to be useful resources enabling the community to gain additional insight on sequencing technologies for applications such as SNP, indel or structural variant calling, and de novo assembly.


Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , Bovinos , Femenino , Benchmarking , Genoma , Análisis de Secuencia de ADN
3.
BMC Bioinformatics ; 23(1): 495, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36401177

RESUMEN

BACKGROUND: Sequencing is the key method to study the impact of short RNAs, which include micro RNAs, tRNA-derived RNAs, and piwi-interacting RNA, among others. The first step to make use of these reads is to map them to a genome. Existing mapping tools have been developed for long RNAs in mind, and, so far, no tool has been conceived for short RNAs. However, short RNAs have several distinctive features which make them different from messenger RNAs: they are shorter, they are often redundant, they can be produced by duplicated loci, and they may be edited at their ends. RESULTS: In this work, we present a new tool, srnaMapper, that exhaustively maps these reads with all these features in mind, and is most efficient when applied to reads no longer than 50 base pairs. We show, on several datasets, that srnaMapper is very efficient considering computation time and edition error handling: it retrieves all the hits, with arbitrary number of errors, in time comparable with non-exhaustive tools.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs , Análisis de Secuencia de ARN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Interferente Pequeño , ARN de Transferencia
4.
Brain ; 145(6): 2018-2030, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35552381

RESUMEN

Narcolepsy with cataplexy or narcolepsy type 1 is a disabling chronic sleep disorder resulting from the destruction of orexinergic neurons in the hypothalamus. The tight association of narcolepsy with HLA-DQB1*06:02 strongly suggest an autoimmune origin to this disease. Furthermore, converging epidemiological studies have identified an increased incidence for narcolepsy in Europe following Pandemrix® vaccination against the 2009-2010 pandemic 'influenza' virus strain. The potential immunological link between the Pandemrix® vaccination and narcolepsy remains, however, unknown. Deciphering these mechanisms may reveal pathways potentially at play in most cases of narcolepsy. Here, we developed a mouse model allowing to track and study the T-cell response against 'influenza' virus haemagglutinin, which was selectively expressed in the orexinergic neurons as a new self-antigen. Pandemrix® vaccination in this mouse model resulted in hypothalamic inflammation and selective destruction of orexin-producing neurons. Further investigations on the relative contribution of T-cell subsets in this process revealed that haemagglutinin-specific CD4 T cells were necessary for the development of hypothalamic inflammation, but insufficient for killing orexinergic neurons. Conversely, haemagglutinin-specific CD8 T cells could not initiate inflammation but were the effectors of the destruction of orexinergic neurons. Additional studies revealed pathways potentially involved in the disease process. Notably, the interferon-γ pathway was proven essential, as interferon-γ-deficient CD8 T cells were unable to elicit the loss of orexinergic neurons. Our work demonstrates that an immunopathological process mimicking narcolepsy can be elicited by immune cross-reactivity between a vaccine antigen and a neuronal self-antigen. This process relies on a synergy between autoreactive CD4 and CD8 T cells for disease development. This work furthers our understanding of the mechanisms and pathways potentially involved in the development of a neurological side effect due to a vaccine and, likely, to narcolepsy in general.


Asunto(s)
Autoinmunidad , Vacunas contra la Influenza , Narcolepsia , Animales , Autoantígenos , Hemaglutininas , Inflamación/complicaciones , Vacunas contra la Influenza/efectos adversos , Interferón gamma , Ratones , Narcolepsia/inducido químicamente , Neuronas , Orexinas , Linfocitos T/inmunología , Vacunación/efectos adversos
5.
Front Genet ; 12: 748239, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34675966

RESUMEN

The spatial organization of the genome in the nucleus plays a crucial role in eukaryotic cell functions, yet little is known about chromatin structure variations during late fetal development in mammals. We performed in situ high-throughput chromosome conformation capture (Hi-C) sequencing of DNA from muscle samples of pig fetuses at two late stages of gestation. Comparative analysis of the resulting Hi-C interaction matrices between both groups showed widespread differences of different types. First, we discovered a complex landscape of stable and group-specific Topologically Associating Domains (TADs). Investigating the nuclear partition of the chromatin into transcriptionally active and inactive compartments, we observed a genome-wide fragmentation of these compartments between 90 and 110 days of gestation. Also, we identified and characterized the distribution of differential cis- and trans-pairwise interactions. In particular, trans-interactions at chromosome extremities revealed a mechanism of telomere clustering further confirmed by 3D Fluorescence in situ Hybridization (FISH). Altogether, we report major variations of the three-dimensional genome conformation during muscle development in pig, involving several levels of chromatin remodeling and structural regulation.

6.
PLoS One ; 16(8): e0256196, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34415926

RESUMEN

Small RNAs (sRNAs) encompass a great variety of molecules of different kinds, such as microRNAs, small interfering RNAs, Piwi-associated RNA, among others. These sRNAs have a wide range of activities, which include gene regulation, protection against virus, transposable element silencing, and have been identified as a key actor in determining the development of the cell. Small RNA sequencing is thus routinely used to assess the expression of the diversity of sRNAs, usually in the context of differentially expression, where two conditions are compared. Tools that detect differentially expressed microRNAs are numerous, because microRNAs are well documented, and the associated genes are well defined. However, tools are lacking to detect other types of sRNAs, which are less studied, and whose precursor RNA is not well characterized. We present here a new method, called srnadiff, which finds all kinds of differentially expressed sRNAs. To the extent of our knowledge, srnadiff is the first tool that detects differentially expressed sRNAs without the use of external information, such as genomic annotation or additional sequences of sRNAs.


Asunto(s)
Biología Computacional , MicroARNs/genética , ARN Interferente Pequeño/genética , ARN Pequeño no Traducido/genética , Elementos Transponibles de ADN/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/genética , Silenciador del Gen , Genoma Bacteriano/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento
7.
PLoS One ; 15(5): e0231738, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32463818

RESUMEN

High-throughput sequencing makes it possible to provide the genome-wide distribution of small non coding RNAs in a single experiment, and contributed greatly to the identification and understanding of these RNAs in the last decade. Small non coding RNAs gather a wide collection of classes, such as microRNAs, tRNA-derived fragments, small nucleolar RNAs and small nuclear RNAs, to name a few. As usual in RNA-seq studies, the sequencing step is followed by a feature quantification step: when a genome is available, the reads are aligned to the genome, their genomic positions are compared to the already available annotations, and the corresponding features are quantified. However, problem arises when many reads map at several positions and while different strategies exist to circumvent this problem, all of them are biased. In this article, we present a new strategy that compares all the reads that map at several positions, and their annotations when available. In many cases, all the hits co-localize with the same feature annotation (a duplicated miRNA or a duplicated gene, for instance). When different annotations exist for a given read, we propose to merge existing features and provide the counts for the merged features. This new strategy has been implemented in a tool, mmannot, freely available at https://github.com/mzytnicki/mmannot.


Asunto(s)
ARN Pequeño no Traducido/genética , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , Anotación de Secuencia Molecular
8.
BMC Biol ; 17(1): 108, 2019 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-31884969

RESUMEN

BACKGROUND: Comparative genomics studies are central in identifying the coding and non-coding elements associated with complex traits, and the functional annotation of genomes is a critical step to decipher the genotype-to-phenotype relationships in livestock animals. As part of the Functional Annotation of Animal Genomes (FAANG) action, the FR-AgENCODE project aimed to create reference functional maps of domesticated animals by profiling the landscape of transcription (RNA-seq), chromatin accessibility (ATAC-seq) and conformation (Hi-C) in species representing ruminants (cattle, goat), monogastrics (pig) and birds (chicken), using three target samples related to metabolism (liver) and immunity (CD4+ and CD8+ T cells). RESULTS: RNA-seq assays considerably extended the available catalog of annotated transcripts and identified differentially expressed genes with unknown function, including new syntenic lncRNAs. ATAC-seq highlighted an enrichment for transcription factor binding sites in differentially accessible regions of the chromatin. Comparative analyses revealed a core set of conserved regulatory regions across species. Topologically associating domains (TADs) and epigenetic A/B compartments annotated from Hi-C data were consistent with RNA-seq and ATAC-seq data. Multi-species comparisons showed that conserved TAD boundaries had stronger insulation properties than species-specific ones and that the genomic distribution of orthologous genes in A/B compartments was significantly conserved across species. CONCLUSIONS: We report the first multi-species and multi-assay genome annotation results obtained by a FAANG project. Beyond the generation of reference annotations and the confirmation of previous findings on model animals, the integrative analysis of data from multiple assays and species sheds a new light on the multi-scale selective pressure shaping genome organization from birds to mammals. Overall, these results emphasize the value of FAANG for research on domesticated animals and reinforces the importance of future meta-analyses of the reference datasets being generated by this community on different species.


Asunto(s)
Animales Domésticos/genética , Cromatina/genética , Anotación de Secuencia Molecular , Transcriptoma , Animales , Bovinos , Pollos , Cabras , Filogenia , Sus scrofa
9.
Epigenetics Chromatin ; 12(1): 63, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601272

RESUMEN

BACKGROUND: MeCP2-a chromatin-binding protein associated with Rett syndrome-has two main isoforms, MeCP2-E1 and MeCP2-E2, differing in a few N-terminal amino acid residues. Previous studies have shown brain region-specific expression of these isoforms which, in addition to their different cellular localization and differential expression during brain development, suggest that they may also have non-overlapping molecular mechanisms. However, differential functions of MeCP2-E1 and E2 remain largely unexplored. RESULTS: Here, we show that the N-terminal domains (NTD) of MeCP2-E1 and E2 modulate the ability of the methyl-binding domain (MBD) to interact with DNA as well as influencing the turn-over rates, binding dynamics, response to neuronal depolarization, and circadian oscillations of the two isoforms. Our proteomics data indicate that both isoforms exhibit unique interacting protein partners. Moreover, genome-wide analysis using ChIP-seq provide evidence for a shared as well as a specific regulation of different sets of genes. CONCLUSIONS: Our study supports the idea that Rett syndrome might arise from simultaneous impairment of cellular processes involving non-overlapping functions of MECP2 isoforms. For instance, MeCP2-E1 mutations might impact stimuli-dependent chromatin regulation, while MeCP2-E2 mutations could result in aberrant ribosomal expression. Overall, our findings provide insight into the functional complexity of MeCP2 by dissecting differential aspects of its two isoforms.


Asunto(s)
ADN/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Animales , Línea Celular Tumoral , Cromatina/metabolismo , Ritmo Circadiano/genética , Humanos , Proteína 2 de Unión a Metil-CpG/química , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Noqueados , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Síndrome de Rett/genética , Síndrome de Rett/patología
10.
Mol Ecol ; 28(6): 1491-1505, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30520198

RESUMEN

Hybridization can induce transposons to jump into new genomic positions, which may result in their accumulation across the genome. Alternatively, transposon copy numbers may increase through nonallelic (ectopic) homologous recombination in highly repetitive regions of the genome. The relative contribution of transposition bursts versus recombination-based mechanisms to evolutionary processes remains unclear because studies on transposon dynamics in natural systems are rare. We assessed the genomewide distribution of transposon insertions in a young hybrid lineage ("invasive Cottus", n = 11) and its parental species Cottus rhenanus (n = 17) and Cottus perifretum(n = 9) using a reference genome assembled from long single molecule pacbio reads. An inventory of transposable elements was reconstructed from the same data and annotated. Transposon copy numbers in the hybrid lineage increased in 120 (15.9%) out of 757 transposons studied here. The copy number increased on average by 69% (range: 10%-197%). Given the age of the hybrid lineage, this suggests that they have proliferated within a few hundred generations since admixture began. However, frequency spectra of transposon insertions revealed no increase in novel and rare insertions across assembled parts of the genome. This implies that transposons were added to repetitive regions of the genome that remain difficult to assemble. Future studies will need to evaluate whether recombination-based mechanisms rather than genomewide transposition may explain the majority of the recent transposon proliferation in the hybrid lineage. Irrespectively of the underlying mechanism, the observed overabundance in repetitive parts of the genome suggests that gene-rich regions are unlikely to be directly affected.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Elementos Transponibles de ADN/genética , Evolución Molecular , Peces/genética , Animales , Genoma/genética , Hibridación Genética
11.
Nucleic Acids Res ; 45(20): 11891-11907, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-28981840

RESUMEN

RNase III enzymes cleave double stranded (ds)RNA. This is an essential step for regulating the processing of mRNA, rRNA, snoRNA and other small RNAs, including siRNA and miRNA. Arabidopsis thaliana encodes nine RNase III: four DICER-LIKE (DCL) and five RNASE THREE LIKE (RTL). To better understand the molecular functions of RNase III in plants we developed a biochemical assay using RTL1 as a model. We show that RTL1 does not degrade dsRNA randomly, but recognizes specific duplex sequences to direct accurate cleavage. Furthermore, we demonstrate that RNase III and dsRNA binding domains (dsRBD) are both required for dsRNA cleavage. Interestingly, the four DCL and the three RTL that carry dsRBD share a conserved cysteine (C230 in Arabidopsis RTL1) in their dsRBD. C230 is essential for RTL1 and DCL1 activities and is subjected to post-transcriptional modification. Indeed, under oxidizing conditions, glutathionylation of C230 inhibits RTL1 cleavage activity in a reversible manner involving glutaredoxins. We conclude that the redox state of the dsRBD ensures a fine-tune regulation of dsRNA processing by plant RNase III.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , ARN Bicatenario/metabolismo , ARN de Planta/metabolismo , Proteínas Represoras/metabolismo , Regiones no Traducidas 3'/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Cisteína/genética , Glutatión/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Oxidación-Reducción , Dominios Proteicos , División del ARN , ARN Bicatenario/química , ARN Bicatenario/genética , ARN de Planta/química , ARN de Planta/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Motivos de Unión al ARN/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Homología de Secuencia de Ácido Nucleico
12.
BMC Bioinformatics ; 18(1): 411, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28915787

RESUMEN

BACKGROUND: RNA-Seq is currently used routinely, and it provides accurate information on gene transcription. However, the method cannot accurately estimate duplicated genes expression. Several strategies have been previously used (drop duplicated genes, distribute uniformly the reads, or estimate expression), but all of them provide biased results. RESULTS: We provide here a tool, called mmquant, for computing gene expression, included duplicated genes. If a read maps at different positions, the tool detects that the corresponding genes are duplicated; it merges the genes and creates a merged gene. The counts of ambiguous reads is then based on the input genes and the merged genes. CONCLUSION: mmquant is a drop-in replacement of the widely used tools htseq-count and featureCounts that handles multi-mapping reads in an unabiased way.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Programas Informáticos , Biología Computacional , Bases de Datos Genéticas , Análisis de Secuencia de ARN
13.
Plant Cell ; 28(9): 2197-2211, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27495811

RESUMEN

LHP1-INTERACTING FACTOR2 (LIF2), a heterogeneous nuclear ribonucleoprotein involved in Arabidopsis thaliana cell fate and stress responses, interacts with LIKE HETEROCHROMATIN PROTEIN1 (LHP1), a Polycomb Repressive Complex1 subunit. To investigate LIF2-LHP1 functional interplay, we mapped their genome-wide distributions in wild-type, lif2, and lhp1 backgrounds, under standard and stress conditions. Interestingly, LHP1-targeted regions form local clusters, suggesting an underlying functional organization of the plant genome. Regions targeted by both LIF2 and LHP1 were enriched in stress-responsive genes, the H2A.Z histone variant, and antagonistic histone marks. We identified specific motifs within the targeted regions, including a G-box-like motif, a GAGA motif, and a telo-box. LIF2 and LHP1 can operate both antagonistically and synergistically. In response to methyl jasmonate treatment, LIF2 was rapidly recruited to chromatin, where it mediated transcriptional gene activation. Thus, LIF2 and LHP1 participate in transcriptional switches in stress-response pathways.

14.
Plant Cell ; 28(2): 406-25, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26764378

RESUMEN

RNaseIII enzymes catalyze the cleavage of double-stranded RNA (dsRNA) and have diverse functions in RNA maturation. Arabidopsis thaliana RNASE THREE LIKE2 (RTL2), which carries one RNaseIII and two dsRNA binding (DRB) domains, is a unique Arabidopsis RNaseIII enzyme resembling the budding yeast small interfering RNA (siRNA)-producing Dcr1 enzyme. Here, we show that RTL2 modulates the production of a subset of small RNAs and that this activity depends on both its RNaseIII and DRB domains. However, the mode of action of RTL2 differs from that of Dcr1. Whereas Dcr1 directly cleaves dsRNAs into 23-nucleotide siRNAs, RTL2 likely cleaves dsRNAs into longer molecules, which are subsequently processed into small RNAs by the DICER-LIKE enzymes. Depending on the dsRNA considered, RTL2-mediated maturation either improves (RTL2-dependent loci) or reduces (RTL2-sensitive loci) the production of small RNAs. Because the vast majority of RTL2-regulated loci correspond to transposons and intergenic regions producing 24-nucleotide siRNAs that guide DNA methylation, RTL2 depletion modifies DNA methylation in these regions. Nevertheless, 13% of RTL2-regulated loci correspond to protein-coding genes. We show that changes in 24-nucleotide siRNA levels also affect DNA methylation levels at such loci and inversely correlate with mRNA steady state levels, thus implicating RTL2 in the regulation of protein-coding gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , ARN Interferente Pequeño/genética , Ribonucleasa III/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Metilación de ADN , Silenciador del Gen , Genes Reporteros , Sitios Genéticos/genética , Raíces de Plantas/genética , Raíces de Plantas/fisiología , ARN Bicatenario/genética , ARN Mensajero/genética , ARN de Planta/genética , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/genética
15.
PLoS Biol ; 13(12): e1002326, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26696443

RESUMEN

Small RNAs play essential regulatory roles in genome stability, development, and responses to biotic and abiotic stresses in most eukaryotes. In plants, the RNaseIII enzyme DICER-LIKE1 (DCL1) produces miRNAs, whereas DCL2, DCL3, and DCL4 produce various size classes of siRNAs. Plants also encode RNASE THREE-LIKE (RTL) enzymes that lack DCL-specific domains and whose function is largely unknown. We found that virus infection induces RTL1 expression, suggesting that this enzyme could play a role in plant-virus interaction. To first investigate the biochemical activity of RTL1 independent of virus infection, small RNAs were sequenced from transgenic plants constitutively expressing RTL1. These plants lacked almost all DCL2-, DCL3-, and DCL4-dependent small RNAs, indicating that RTL1 is a general suppressor of plant siRNA pathways. In vivo and in vitro assays revealed that RTL1 prevents siRNA production by cleaving dsRNA prior to DCL2-, DCL3-, and DCL4-processing. The substrate of RTL1 cleavage is likely long-perfect (or near-perfect) dsRNA, consistent with the RTL1-insensitivity of miRNAs, which derive from DCL1-processing of short-imperfect dsRNA. Virus infection induces RTL1 mRNA accumulation, but viral proteins that suppress RNA silencing inhibit RTL1 activity, suggesting that RTL1 has evolved as an inducible antiviral defense that could target dsRNA intermediates of viral replication, but that a broad range of viruses counteract RTL1 using the same protein toolbox used to inhibit antiviral RNA silencing. Together, these results reveal yet another level of complexity in the evolutionary battle between viruses and plant defenses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virología , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Virus ARN/fisiología , ARN de Planta/antagonistas & inhibidores , ARN Interferente Pequeño/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Sustitución de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Carmovirus/fisiología , Biología Computacional/métodos , Cucumovirus/fisiología , Isoenzimas/genética , Isoenzimas/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/virología , Mutación Puntual , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Tobamovirus/fisiología , Tymovirus/fisiología
16.
Nucleic Acids Res ; 43(17): 8464-75, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26209135

RESUMEN

Although post-transcriptional gene silencing (PTGS) has been studied for more than a decade, there is still a gap in our understanding of how de novo silencing is initiated against genetic elements that are not supposed to produce double-stranded (ds)RNA. Given the pervasive transcription occurring throughout eukaryote genomes, we tested the hypothesis that unintended transcription could produce antisense (as)RNA molecules that participate to the initiation of PTGS triggered by sense transgenes (S-PTGS). Our results reveal a higher level of asRNA in Arabidopsis thaliana lines that spontaneously trigger S-PTGS than in lines that do not. However, PTGS triggered by antisense transgenes (AS-PTGS) differs from S-PTGS. In particular, a hypomorphic ago1 mutation that suppresses S-PTGS prevents the degradation of asRNA but not sense RNA during AS-PTGS, suggesting a different treatment of coding and non-coding RNA by AGO1, likely because of AGO1 association to polysomes. Moreover, the intended asRNA produced during AS-PTGS is capped whereas the asRNA produced during S-PTGS derives from 3' maturation of a read-through transcript and is uncapped. Thus, we propose that uncapped asRNA corresponds to the aberrant RNA molecule that is converted to dsRNA by RNA-DEPENDENT RNA POLYMERASE 6 in siRNA-bodies to initiate S-PTGS, whereas capped asRNA must anneal with sense RNA to produce dsRNA that initiate AS-PTGS.


Asunto(s)
Interferencia de ARN , ARN sin Sentido/metabolismo , Transgenes , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Mutación , Estabilidad del ARN , ARN sin Sentido/biosíntesis , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo
17.
Nat Plants ; 1: 14023, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-27246759

RESUMEN

Despite evolutionary conserved mechanisms to silence transposable element activity, there are drastic differences in the abundance of transposable elements even among closely related plant species. We conducted a de novo assembly for the 375 Mb genome of the perennial model plant, Arabis alpina. Analysing this genome revealed long-lasting and recent transposable element activity predominately driven by Gypsy long terminal repeat retrotransposons, which extended the low-recombining pericentromeres and transformed large formerly euchromatic regions into repeat-rich pericentromeric regions. This reduced capacity for long terminal repeat retrotransposon silencing and removal in A. alpina co-occurs with unexpectedly low levels of DNA methylation. Most remarkably, the striking reduction of symmetrical CG and CHG methylation suggests weakened DNA methylation maintenance in A. alpina compared with Arabidopsis thaliana. Phylogenetic analyses indicate a highly dynamic evolution of some components of methylation maintenance machinery that might be related to the unique methylation in A. alpina.

18.
Nat Commun ; 5: 5269, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25381880

RESUMEN

The extent and importance of endogenous viral elements have been extensively described in animals but are much less well understood in plants. Here we describe a new genus of Caulimoviridae called 'Florendovirus', members of which have colonized the genomes of a large diversity of flowering plants, sometimes at very high copy numbers (>0.5% total genome content). The genome invasion of Oryza is dated to over 1.8 million years ago (MYA) but phylogeographic evidence points to an even older age of 20-34 MYA for this virus group. Some appear to have had a bipartite genome organization, a unique characteristic among viral retroelements. In Vitis vinifera, 9% of the endogenous florendovirus loci are located within introns and therefore may influence host gene expression. The frequent colocation of endogenous florendovirus loci with TA simple sequence repeats, which are associated with chromosome fragility, suggests sequence capture during repair of double-stranded DNA breaks.


Asunto(s)
Caulimoviridae/genética , Evolución Molecular , Genoma de Planta/genética , Oryza/virología , Filogenia , Dosificación de Gen/genética , Sitios Genéticos/genética , Intrones/genética , Repeticiones de Microsatélite/genética , Replicación Viral/genética
19.
Bioinformatics ; 30(18): 2656-8, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24894500

RESUMEN

MOTIVATION: Recent technological advances are allowing many laboratories to sequence their research organisms. Available de novo assemblers leave repetitive portions of the genome poorly assembled. Some genomes contain high proportions of transposable elements, and transposable elements appear to be a major force behind diversity and adaptation. Few de novo assemblers for transposable elements exist, and most have either been designed for small genomes or 454 reads. RESULTS: In this article, we present a new transposable element de novo assembler, Tedna, which assembles a set of transposable elements directly from the reads. Tedna uses Illumina paired-end reads, the most widely used sequencing technology for de novo assembly, and forms full-length transposable elements. AVAILABILITY AND IMPLEMENTATION: Tedna is available at http://urgi.versailles.inra.fr/Tools/Tedna, under the GPLv3 license. It is written in C++11 and only requires the Sparsehash Package, freely available under the New BSD License. Tedna can be used on standard computers with limited RAM resources, although it may also use large memory for better results. Most of the code is parallelized and thus ready for large infrastructures.


Asunto(s)
Elementos Transponibles de ADN/genética , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Arabidopsis/genética , Secuencias Repetitivas de Ácidos Nucleicos , Triticum/genética
20.
Proc Natl Acad Sci U S A ; 110(49): 19842-7, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24248389

RESUMEN

Most of our understanding of Drosophila heterochromatin structure and evolution has come from the annotation of heterochromatin from the isogenic y; cn bw sp strain. However, almost nothing is known about the heterochromatin's structural dynamics and evolution. Here, we focus on a 180-kb heterochromatic locus producing Piwi-interacting RNAs (piRNA cluster), the flamenco (flam) locus, known to be responsible for the control of at least three transposable elements (TEs). We report its detailed structure in three different Drosophila lines chosen according to their capacity to repress or not to repress the expression of two retrotransposons named ZAM and Idefix, and we show that they display high structural diversity. Numerous rearrangements due to homologous and nonhomologous recombination, deletions and segmental duplications, and loss and gain of TEs are diverse sources of active genomic variation at this locus. Notably, we evidence a correlation between the presence of ZAM and Idefix in this piRNA cluster and their silencing. They are absent from flam in the strain where they are derepressed. We show that, unexpectedly, more than half of the flam locus results from recent TE insertions and that most of the elements concerned are prone to horizontal transfer between species of the melanogaster subgroup. We build a model showing how such high and constant dynamics of a piRNA master locus open the way to continual emergence of new patterns of piRNA biogenesis leading to changes in the level of transposition control.


Asunto(s)
Cadherinas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolución Molecular , Variación Genética , Heterocromatina/genética , ARN Interferente Pequeño/genética , Retroelementos/genética , Animales , Secuencia de Bases , Biología Computacional , Transferencia de Gen Horizontal/genética , Datos de Secuencia Molecular , Oligonucleótidos/genética , Interferencia de ARN , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA