RESUMEN
α-aryl-α-tetralones and α-fluoro-α-aryl-α-tetralones derivatives were synthesized by palladium catalyzed α-arylation reaction of α-tetralones and α-fluoro-α-tetralones, with bromoarenes in moderate to good yields. These compounds were evaluated for their in vitro anti-proliferative effects against human breast cancer and leukemia cell lines with diverse profiles of drug resistance. The most promising compounds, 3b, 3c, 8a and 8c, were effective on both neoplastic models. 3b and 8a induced higher toxicity on multidrug resistant cells and were able to avoid efflux by ABCB1 and ABCC1 transporters. Theoretical calculations of the physicochemical descriptors to predict ADMETox properties were favorable concerning Lipinski's rule of five, results that reflected on the low effects on non-tumor cells. Therefore, these compounds showed great potential for development of pharmaceutical agents against therapy refractory cancers.
Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Programas Informáticos , Tetralonas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7 , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Tetralonas/síntesis química , Tetralonas/químicaRESUMEN
Multidrug resistance (MDR) in cancer arises from cross-resistance to structurally- and functionally-divergent chemotherapeutic drugs. In particular, MDR is characterized by increased expression and activity of ATP-binding cassette (ABC) superfamily transporters. Sphingolipids are substrates of ABC proteins in cell signaling, membrane biosynthesis, and inflammation, for example, and their products can favor cancer progression. Glucosylceramide (GlcCer) is a ubiquitous glycosphingolipid (GSL) generated by glucosylceramide synthase, a key regulatory enzyme encoded by the UDP-glucose ceramide glucosyltransferase (UGCG) gene. Stressed cells increase de novo biosynthesis of ceramides, which return to sub-toxic levels after UGCG mediates incorporation into GlcCer. Given that cancer cells seem to mobilize UGCG and have increased GSL content for ceramide clearance, which ultimately contributes to chemotherapy failure, here we investigated how inhibition of GSL biosynthesis affects the MDR phenotype of chronic myeloid leukemias. We found that MDR is associated with higher UGCG expression and with a complex GSL profile. UGCG inhibition with the ceramide analog d-threo-1-(3,4,-ethylenedioxy)phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (EtDO-P4) greatly reduced GSL and monosialotetrahexosylganglioside levels, and co-treatment with standard chemotherapeutics sensitized cells to mitochondrial membrane potential loss and apoptosis. ABC subfamily B member 1 (ABCB1) expression was reduced, and ABCC-mediated efflux activity was modulated by competition with nonglycosylated ceramides. Consistently, inhibition of ABCC-mediated transport reduced the efflux of exogenous C6-ceramide. Overall, UGCG inhibition impaired the malignant glycophenotype of MDR leukemias, which typically overcomes drug resistance through distinct mechanisms. This work sheds light on the involvement of GSL in chemotherapy failure, and its findings suggest that targeted GSL modulation could help manage MDR leukemias.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Glicoesfingolípidos/sangre , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Proteínas de Neoplasias/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glicoesfingolípidos/genética , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Proteínas de Neoplasias/genética , Propanolaminas/farmacología , Pirrolidinas/farmacologíaRESUMEN
Trans-sialidase from Trypanosoma cruzi (Tc-TS) belongs to a superfamily of proteins that may have enzymatic activity. While enzymatically active members (Tc-aTS) are able to transfer sialic acid from the host cell sialyl-glycoconjugates onto the parasite or to other molecules on the host cell surface, the inactive members (Tc-iTS) are characterized by their lectinic properties. Over the last 10 years, several papers demonstrated that, individually, Tc-aTS or Tc-iTS is able to modulate several biological events. Since the genes encoding Tc-iTS and Tc-aTS are present in the same copy number, and both proteins portray similar substrate-specificities as well, it would be plausible to speculate that such molecules may compete for the same sialyl-glycan structures and govern numerous immunobiological phenomena. However, their combined effect has never been evaluated in the course of an acute infection. In this study, we investigated the ability of both proteins to modulate the production of inflammatory signals, as well as the homing of T cells to the cardiac tissue of infected mice, events that usually occur during the acute phase of T. cruzi infection. The results showed that the intravenous administration of Tc-iTS, but not Tc-aTS protected the cardiac tissue from injury caused by reduced traffic of inflammatory cells. In addition, the ability of Tc-aTS to modulate the production of inflammatory cytokines was attenuated and/or compromised when Tc-iTS was co-injected in the same proportions. These results suggest that although both proteins present structural similarities and compete for the same sialyl-glycan epitopes, they might present distinct immunomodulatory properties on T cells following T. cruzi infection.
RESUMEN
Trypanosoma cruzi, the etiological agent of Chagas disease exhibits multiple mechanisms to guarantee its establishment and persistence in the infected host. It has been well demonstrated that T. cruzi is not able to synthesize sialic acids (Sia). To acquire the monosaccharide, the parasite makes use of a multifunctional enzyme called trans-sialidase (Tc-TS). Since this enzyme has no analogous in the vertebrate host, it has been used as a target in drug therapy development. Tc-TS preferentially catalyzes the transfer of Sia from the host glycoconjugates to the terminal ß-galactopyranosyl residues of mucin-like molecules present on the parasite's cell surface. Alternatively, the enzyme can sialylate/re-sialylate glycoconjugates expressed on the surface of host cells. Since its discovery, several studies have shown that T. cruzi employs the Tc-TS activity to modulate the host cell sialoglycophenotype, thus favoring its perpetuation in the infected vertebrate. In this review, we summarize the dynamic of host/parasite sialoglycophenotype modulation, highlighting its role in the subversion of host immune response in order to promote the establishment of persistent chronic infection.