Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 128(26): 5128-5137, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38860841

RESUMEN

Integral and differential cross sections for elastic and electronically inelastic electron scattering from the pyrrole molecule are reported. The cross section calculations employed the Schwinger multichannel method with norm-conserving pseudopotentials. The collision dynamics was described according to a model in which up to 209 energetically accessible channels were treated as open. In the elastic channel, calculations carried out in the interval of energies from 0 to 50 eV revealed the presence of four resonances with peaks located at 2.56 eV (π1*), 3.82 eV (π2*), 4.70 eV (σNH*), and between 8.30 and 9.50 eV (σ*) positions which are in good agreement with previous assignments. Moreover, the role of the multichannel coupling effects in obtaining accurate cross sections was evaluated by comparing the present results with theoretical results recently reported in the literature and early measurements performed for elastic electron collisions with furan. Electronic excitation cross sections involving the transitions from ground state to the 13B2, 13A1, 11A2, and 11A1 excited states of pyrrole driven by electron impact are presented for energies from thresholds up to 50 eV and, whenever possible, critically compared with the data available in the literature.

2.
Phys Chem Chem Phys ; 26(9): 7276-7286, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37987761

RESUMEN

We report on elastic and electronically inelastic integral and differential cross sections as well as ionization and total cross sections for electron collisions with the pyrazine molecule. The Schwinger multichannel method is applied in calculations carried out according to the minimal orbital basis for single configuration interactions strategy from the 1-channel up to 139-channels close-coupling level of approximation. With these calculations we have obtained integral and differential cross sections as well as excitation functions for elastic electron scattering and, also, integral and differential cross sections for electronic excitation from the ground state to the 3B1u, 3B2u, 3B3u, 1B1u, 1B2u and 1B3u excited states of pyrazine by electron impact. By summing the total ionization cross section obtained by means of the binary-encounter-Bethe model to these elastic and electronically inelastic contributions, we provided an estimate for the total cross section describing the electron-pyrazine interaction process. The independent atom model with the screening-corrected additivity rule plus interference terms method was also used in the present study to determine elastic integral and differential as well as ionization and total cross sections for electron collisions from pyrazine. The present results were, whenever possible, critically compared to the experimental and theoretical data available in the literature. In general, the overall agreement between the present results and the experiment is quite encouraging.

3.
J Chem Phys ; 159(19)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37966005

RESUMEN

We report experimental differential cross sections (DCSs) for electron impact excitation of bands I to V of benzene at incident energies of 10, 12.5, 15, and 20 eV. They are compared to calculations using the Schwinger multichannel method while accounting for up to 437 open channels. For intermediate scattering angles, the calculations reveal that the most intense band (V) emerges from surprisingly similar contributions from all its underlying states (despite some preference for the dipole-allowed transitions). They further shed light on intricate multichannel couplings between the states of bands I to V and higher-lying Rydberg states. In turn, the measurements support a vibronic coupling mechanism for excitation of bands II and IV and also show an unexpected forward peak in the spin-forbidden transition accounting for band III. Overall, there is decent agreement between theory and experiment at intermediate angles and at lower energies and in terms of the relative DCSs of the five bands. Discrepancies between the present and previous experiment regarding bands IV and V draw attention to the need of additional experimental investigations. We also report measured DCSs for vibrational excitation of combined C-H stretching modes.

4.
J Phys Chem A ; 126(38): 6710-6718, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36103213

RESUMEN

We present integral, differential, and momentum transfer cross sections for elastic electron collisions with the two most stable isomers of the B2H4 molecule, hereafter referred to as isomer I (C2v symmetry) and isomer II (D2d symmetry), and with the B2H6 molecule (D2h symmetry). The isomer I of B2H4 and the B2H6 molecule are known for their electrodeficiency in the "three-center two-electron" (3c-2e) bond, a region in which a hydrogen atom occupies a bridged position between two non-hydrogen atoms. The cross sections were computed by using the Schwinger multichannel method implemented with norm-conserving pseudopotentials, and the scattering calculations were carried out in the static-exchange and static-exchange plus polarization levels of approximation for energies from 0.1 to 50 eV. We discuss the presence of shape resonances in the scattering cross sections. We also made a direct comparison among the cross sections of these three targets.

5.
J Chem Phys ; 144(12): 124310, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-27036451

RESUMEN

We report on integral-, momentum transfer- and differential cross sections for elastic and electronically inelastic electron collisions with furfural (C5H4O2). The calculations were performed with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (N(open)) at either the static-exchange (N(open) ch-SE) or the static-exchange-plus-polarisation (N(open) ch-SEP) approximation was employed to calculate the scattering amplitudes at impact energies lying between 5 eV and 50 eV, using a channel coupling scheme that ranges from the 1ch-SEP up to the 63ch-SE level of approximation depending on the energy considered. For elastic scattering, we found very good overall agreement at higher energies among our SMCPP cross sections, our IAM-SCAR+I cross sections and the experimental data for furan (a molecule that differs from furfural only by the substitution of a hydrogen atom in furan with an aldehyde functional group). This is a good indication that our elastic cross sections are converged with respect to the multichannel coupling effect for most of the investigated intermediate energies. However, although the present application represents the most sophisticated calculation performed with the SMCPP method thus far, the inelastic cross sections, even for the low lying energy states, are still not completely converged for intermediate and higher energies. We discuss possible reasons leading to this discrepancy and point out what further steps need to be undertaken in order to improve the agreement between the calculated and measured cross sections.

6.
J Chem Phys ; 142(10): 104304, 2015 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-25770537

RESUMEN

We report theoretical and experimental total cross sections for electron scattering by phenol (C6H5OH). The experimental data were obtained with an apparatus based in Madrid and the calculated cross sections with two different methodologies, the independent atom method with screening corrected additivity rule (IAM-SCAR), and the Schwinger multichannel method with pseudopotentials (SMCPP). The SMCPP method in the Nopen-channel coupling scheme, at the static-exchange-plus-polarization approximation, is employed to calculate the scattering amplitudes at impact energies ranging from 5.0 eV to 50 eV. We discuss the multichannel coupling effects in the calculated cross sections, in particular how the number of excited states included in the open-channel space impacts upon the convergence of the elastic cross sections at higher collision energies. The IAM-SCAR approach was also used to obtain the elastic differential cross sections (DCSs) and for correcting the experimental total cross sections for the so-called forward angle scattering effect. We found a very good agreement between our SMCPP theoretical differential, integral, and momentum transfer cross sections and experimental data for benzene (a molecule differing from phenol by replacing a hydrogen atom in benzene with a hydroxyl group). Although some discrepancies were found for lower energies, the agreement between the SMCPP data and the DCSs obtained with the IAM-SCAR method improves, as expected, as the impact energy increases. We also have a good agreement among the present SMCPP calculated total cross section (which includes elastic, 32 inelastic electronic excitation processes and ionization contributions, the latter estimated with the binary-encounter-Bethe model), the IAM-SCAR total cross section, and the experimental data when the latter is corrected for the forward angle scattering effect [Fuss et al., Phys. Rev. A 88, 042702 (2013)].

7.
Phys Chem Chem Phys ; 15(5): 1682-9, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23247550

RESUMEN

We report elastic integral, differential and momentum transfer cross sections for low-energy electron scattering by the cellulose components ß-D-glucose and cellobiose (ß(1 → 4) linked glucose dimer), and the hemicellulose component ß-D-xylose. For comparison with the ß forms, we also obtain results for the amylose subunits α-D-glucose and maltose (α(1 → 4) linked glucose dimer). The integral cross sections show double peaked broad structures between 8 eV and 20 eV similar to previously reported results for tetrahydrofuran and 2-deoxyribose, suggesting a general feature of molecules containing furanose and pyranose rings. These broad structures would reflect OH, CO and/or CC σ* resonances, where inspection of low-lying virtual orbitals suggests significant contribution from anion states. Though we do not examine dissociation pathways, these anion states could play a role in dissociative electron attachment mechanisms, in case they were coupled to the long-lived π* anions found in lignin subunits [de Oliveira et al., Phys. Rev. A, 2012, 86, 020701(R)]. Altogether, the resonance spectra of lignin, cellulose and hemicellulose components establish a physical-chemical basis for electron-induced biomass pretreatment that could be applied to biofuel production.


Asunto(s)
Celulosa/química , Polisacáridos/química , Biomasa , Desoxirribosa/química , Electrones , Furanos/química , Modelos Químicos
8.
J Chem Phys ; 136(8): 084307, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22380042

RESUMEN

We report cross sections for elastic electron scattering by gas phase glycine (neutral form), obtained with the Schwinger multichannel method. The present results are the first obtained with a new implementation that combines parallelization with OpenMP directives and pseudopotentials. The position of the well known π* shape resonance ranged from 2.3 eV to 2.8 eV depending on the polarization model and conformer. For the most stable isomer, the present result (2.4 eV) is in fair agreement with electron transmission spectroscopy assignments (1.93 ± 0.05 eV) and available calculations. Our results also point out a shape resonance around 9.5 eV in the A' symmetry that would be weakly coupled to vibrations of the hydroxyl group. Since electron attachment to a broad and lower lying σ* orbital located on the OH bond has been suggested the underlying mechanism leading to dissociative electron attachment at low energies, we sought for a shape resonance around ~4 eV. Though we obtained cross sections with the target molecule at the equilibrium geometry and with stretched OH bond lengths, least-squares fits to the calculated eigenphase sums did not point out signatures of this anion state (though, in principle, it could be hidden in the large background). The low energy (~1 eV) integral cross section strongly scales as the bond length is stretched, and this could indicate a virtual state pole, since dipole supported bound states are not expected at the geometries addressed here.


Asunto(s)
Electrones , Gases/química , Glicina/química , Aniones/química , Simulación por Computador , Isomerismo , Modelos Químicos , Análisis Espectral
9.
J Chem Phys ; 132(20): 204301, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20515089

RESUMEN

We report cross sections for low-energy elastic electron scattering by pyrrole, obtained with the Schwinger multichannel method implemented with pseudopotentials. Our calculations indicate pi( *) shape resonances in the B(1) and A(2) symmetries, and two sigma( *) resonances in the A(1) symmetry (the system belongs to the C(2v) point group). The present assignments of pi( *) resonances are very close to those previously reported for the isoelectronic furan molecule, in agreement with electron transmission spectra. The lowest-lying sigma( *) anion is localized on the N-H bond and provides a dissociation coordinate similar to those found in the hydroxyl groups of organic acids and alcohols. This sigma(NH) ( *) resonance overlaps the higher-lying pi( *) resonance (possibly both pi( *) states) and could give rise to direct and indirect dissociation pathways, which arise from electron attachment to sigma( *) and pi( *) orbitals, respectively. The photochemistry of pyrrole and 9-H adenine is similar, in particular with respect to the photostability mechanism that allows for the dissipation of the photon energy, and we believe pyrrole would also be a suitable prototype for studies of dissociative electron attachment (DEA) to DNA bases. We point out the connection between the mechanisms of photostability and DEA since both arise from the occupation of sigma( *) and pi( *) orbitals in neutral excited states and in anion states, respectively.


Asunto(s)
Electrones/uso terapéutico , Fotoquímica/métodos , Pirroles/química , Simulación por Computador , ADN/química , Metabolismo Energético , Fotones/efectos adversos , Fotones/uso terapéutico
10.
J Chem Phys ; 132(12): 124309, 2010 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-20370125

RESUMEN

The development of new alternative routes for production of second generation ethanol from sugarcane biomass poses a challenge to the scientific community. Current research in this field addresses the use of a plasma-based pretreatment of the lignocellulosic raw material. With the aim to provide a theoretical background for this experimental technique we investigate the role of low-energy electrons from the plasma in the rupture of the matrix of cellulosic chains. In this paper, we report calculated cross sections for elastic scattering of low-energy electrons by the alpha- and beta-D-glucose monomers. The calculations employed the Schwinger multichannel method with pseudopotentials and were carried out at the static-exchange and static-exchange plus polarization levels of approximation. Through the comparison of the results obtained with inclusion of polarization effects we discuss the influence of the different conformations of the hydroxyl group linked to the anomeric carbon on the resonance spectra of these molecules. Resonant structures appearing at different energies for alpha- and beta-glucose at the low-energy regime of impact energies can be understood as a fingerprint of an "isomeric effect" and suggest that distinct fragmentation mechanisms proceeding via sigma* shape resonances may become operative depending on the glucose anomer under consideration. For energies above 15 eV the integral elastic cross sections are very similar for both monomers. Differential cross sections for the glucopyranose anomers considered in this work are typically dominated by a strong forward scattering due to the molecules' large electric dipole moments and, for energies close to the resonances' positions, they display particular features at the intermediate angular region, notably a pronounced f-wave scattering pattern, that are probably associated with the presence of those structures.


Asunto(s)
Electrones , Glucosa/química , Carbono/química , Transferencia de Energía , Isomerismo , Modelos Químicos , Análisis Espectral , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA