RESUMEN
BACKGROUND: The co-circulation of flaviviruses in tropical regions has led to the hypothesis that immunity generated by a previous dengue infection could promote severe disease outcomes in subsequent infections by heterologous serotypes. This study investigated the influence of antibodies generated by previous Zika infection on the clinical outcomes of dengue infection. METHODOLOGY/PRINCIPAL FINDINGS: We enrolled 1,043 laboratory confirmed dengue patients and investigated their prior infection to Zika or dengue. Severe forms of dengue disease were more frequent in patients with previous Zika infection, but not in those previously exposed to dengue. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that previous Zika infection may represent a risk factor for subsequent severe dengue disease, but we did not find evidence of antibody-dependent enhancement (higher viral titer or pro-inflammatory cytokine overexpression) contributing to exacerbation of the subsequent dengue infection.
Asunto(s)
Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Humanos , Anticuerpos Antivirales , Reacciones CruzadasRESUMEN
Phylogenetic analysis of 34 monkeypox virus genome sequences isolated from patients in Minas Gerais, Brazil, revealed initial importation events in early June 2022, then community transmission within the state. All generated genomes belonged to the B.1 lineage responsible for a global mpox outbreak. These findings can inform public health measures.
Asunto(s)
Monkeypox virus , Mpox , Humanos , Monkeypox virus/genética , Filogenia , Brasil/epidemiología , Brotes de Enfermedades , Genómica , Mpox/epidemiologíaRESUMEN
The duration and protectiveness of antibodies against SARS-CoV-2 in infected subjects are still uncertain; nonetheless, anti-S-specific antibodies can contribute to protective immunity against new infections. It has been described that the level of antibodies produced in COVID-19 is related to the severity of symptoms, and the majority of the humoral response studies have been conducted in hospitalized patients who have been, then, followed over time. However, about 80% of SARS-CoV-2 infections in unvaccinated people are mild to asymptomatic, and this percentage reaches more than 95% in vaccinated individuals. Therefore, understanding the long-term dynamics of the antibody responses in this predominant part of the COVID-19-affected population is essential. In this study, we followed a cohort of individuals with mild COVID-19 who did not require hospitalization. We collected blood samples at sequential times after the SARS-CoV-2-positive qRT-PCR result. From 65 recruited patients, 50 had detectable antibodies at screening. Anti-SARS-CoV-2 IgM levels peaked around two weeks post-COVID-19 diagnostics, becoming undetectable after 65 days. IgG levels reached a peak in approximately one month and remained detectable for more than one year. In contrast to the levels of anti-SARS-CoV-2, antibody neutralization potency indexes persisted over time. In this study, humoral responses in mild COVID-19 patients persisted for more than one year. This is an important long-term follow-up study that includes responses from COVID-19 patients before and after vaccination, a scenery that has become increasingly difficult to evaluate due to the growing vaccination of the world human population.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Estudios de Seguimiento , Estudios Longitudinales , Inmunoglobulina M , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Inmunidad HumoralRESUMEN
Fast, precise, and low-cost diagnostic testing to identify persons infected with SARS-CoV-2 virus is pivotal to control the global pandemic of COVID-19 that began in late 2019. The gold standard method of diagnostic recommended is the RT-qPCR test. However, this method is not universally available, and is time-consuming and requires specialized personnel, as well as sophisticated laboratories. Currently, machine learning is a useful predictive tool for biomedical applications, being able to classify data from diverse nature. Relying on the artificial intelligence learning process, spectroscopic data from nasopharyngeal swab and tracheal aspirate samples can be used to leverage characteristic patterns and nuances in healthy and infected body fluids, which allows to identify infection regardless of symptoms or any other clinical or laboratorial tests. Hence, when new measurements are performed on samples of unknown status and the corresponding data is submitted to such an algorithm, it will be possible to predict whether the source individual is infected or not. This work presents a new methodology for rapid and precise label-free diagnosing of SARS-CoV-2 infection in clinical samples, which combines spectroscopic data acquisition and analysis via artificial intelligence algorithms. Our results show an accuracy of 85% for detection of SARS-CoV-2 in nasopharyngeal swab samples collected from asymptomatic patients or with mild symptoms, as well as an accuracy of 97% in tracheal aspirate samples collected from critically ill COVID-19 patients under mechanical ventilation. Moreover, the acquisition and processing of the information is fast, simple, and cheaper than traditional approaches, suggesting this methodology as a promising tool for biomedical diagnosis vis-à-vis the emerging and re-emerging viral SARS-CoV-2 variant threats in the future.
Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Inteligencia Artificial , Nasofaringe , Aprendizaje Automático , Análisis EspectralRESUMEN
Serological assays have been widely used to detect anti-SARS-CoV-2 antibodies, which are generated from previous exposure to the virus or after vaccination. The presence of anti-SARS-CoV-2 Nucleocapsid antibodies was recently reported in patients´ urine using an in-house urine-based ELISA-platform, allowing a non-invasive way to collect clinical samples and assess immune conversion. In the current study, we evaluated and validated another in-house urine-based ELISA for the detection of anti-SARS-CoV-2 Spike antibodies. Three partial recombinant SARS-CoV-2 Spike proteins comprising the Receptor Binding Domain, expressed in eukaryotic or prokaryotic systems, were tested in an ELISA platform against a panel of over 140 urine and paired serum samples collected from 106 patients confirmed positive for SARS-CoV-2 by qRT-PCR. The key findings from our study were that anti-SARS-CoV-2 Spike antibodies could be detected in urine samples and that the prokaryotic expression of the rSARS-CoV-2 Spike protein was not a barrier to obtain relatively high serology efficiency for the urine-based assay. Thus, use of a urine-based ELISA assay with partial rSARS-CoV-2 Spike proteins, expressed in a prokaryotic system, could be considered as a convenient tool for screening for the presence of anti-SARS-CoV-2 Spike antibodies, and overcome the difficulties arising from sample collection and the need for recombinant proteins produced with eukaryotic expression systems.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática , Sensibilidad y EspecificidadRESUMEN
BACKGROUND: Cellular entry of SARS-CoV-2 has been shown to rely on angiotensin-converting enzyme 2 (ACE2) receptors, whose expression in the testis is among the highest in the body. Additionally, the risk of mortality seems higher among male COVID-19 patients, and though much has been published since the first cases of COVID-19, there remain unanswered questions regarding SARS-CoV-2 impact on testes and potential consequences for reproductive health. We investigated testicular alterations in non-vaccinated deceased COVID-19-patients, the precise location of the virus, its replicative activity, and the immune, vascular, and molecular fluctuations involved in the pathogenesis. RESULTS: We found that SARS-CoV-2 testicular tropism is higher than previously thought and that reliable viral detection in the testis requires sensitive nanosensors or RT-qPCR using a specific methodology. Through an in vitro experiment exposing VERO cells to testicular macerates, we observed viral content in all samples, and the subgenomic RNA's presence reinforced the replicative activity of SARS-CoV-2 in testes of the severe COVID-19 patients. The cellular structures and viral particles, observed by transmission electron microscopy, indicated that macrophages and spermatogonial cells are the main SARS-CoV-2 lodging sites, where new virions form inside the endoplasmic reticulum Golgi intermediate complex. Moreover, we showed infiltrative infected monocytes migrating into the testicular parenchyma. SARS-CoV-2 maintains its replicative and infective abilities long after the patient's infection. Further, we demonstrated high levels of angiotensin II and activated immune cells in the testes of deceased patients. The infected testes show thickening of the tunica propria, germ cell apoptosis, Sertoli cell barrier loss, evident hemorrhage, angiogenesis, Leydig cell inhibition, inflammation, and fibrosis. CONCLUSIONS: Our findings indicate that high angiotensin II levels and activation of mast cells and macrophages may be critical for testicular pathogenesis. Importantly, our findings suggest that patients who become critically ill may exhibit severe alterations and harbor the active virus in the testes.
Asunto(s)
COVID-19 , Testículo , Tropismo Viral , Animales , Humanos , Masculino , Angiotensina II/metabolismo , Chlorocebus aethiops , COVID-19/patología , SARS-CoV-2 , Testículo/inmunología , Testículo/virología , Células VeroRESUMEN
The feline immunodeficiency virus (FIV) is a retrovirus with global impact and distribution, affecting both domestic and wild cats. This virus can cause severe and progressive immunosuppression culminating in the death of felids. Since the discovery of FIV, only one vaccine has been commercially available. This vaccine has proven efficiency against FIV subtypes A and D, whereas subtype B (FIV-B), found in multiple continents, is not currently preventable by vaccination. We, therefore, developed and evaluated a vaccine prototype against FIV-B using the recombinant viral vector modified vaccinia virus Ankara (MVA) expressing the variable region V1-V3 of the FIV-B envelope protein. We conducted preclinical tests in immunized mice (C57BL/6) using a prime-boost protocol with a 21 day interval and evaluated cellular and humoral responses as well the vaccine viability after lyophilization and storage. The animals immunized with the recombinant MVA/FIV virus developed specific splenocyte proliferation when stimulated with designed peptides. We also detected cellular and humoral immunity activation with IFN-y and antibody production. The data obtained in this study support further development of this immunogen and testing in cats.
RESUMEN
There is a massive demand to identify alternative methods to detect new cases of COVID-19 as well as to investigate the epidemiology of the disease. In many countries, importation of commercial kits poses a significant impact on their testing capacity and increases the costs for the public health system. We have developed an ELISA to detect IgG antibodies against SARS-CoV-2 using a recombinant viral nucleocapsid (rN) protein expressed in E. coli. Using a total of 894 clinical samples we showed that the rN-ELISA was able to detect IgG antibodies against SARS-CoV-2 with high sensitivity (97.5%) and specificity (96.3%) when compared to a commercial antibody test. After three external validation studies, we showed that the test accuracy was higher than 90%. The rN-ELISA IgG kit constitutes a convenient and specific method for the large-scale determination of SARS-CoV-2 antibodies in human sera with high reliability.
RESUMEN
There is a massive demand to identify alternative methods to detect new cases of COVID-19 as well as to investigate the epidemiology of the disease. In many countries, importation of commercial kits poses a significant impact on their testing capacity and increases the costs for the public health system. We have developed an ELISA to detect IgG antibodies against SARS-CoV-2 using a recombinant viral nucleocapsid (rN) protein expressed in E. coli. Using a total of 894 clinical samples we showed that the rN-ELISA was able to detect IgG antibodies against SARS-CoV-2 with high sensitivity (97.5%) and specificity (96.3%) when compared to a commercial antibody test. After three external validation studies, we showed that the test accuracy was higher than 90%. The rN-ELISA IgG kit constitutes a convenient and specific method for the large-scale determination of SARS-CoV-2 antibodies in human sera with high reliability.
RESUMEN
The emergence and global dissemination of Severe Acute Respiratory Syndrome virus 2 (SARS-CoV-2) variants of concern (VOCs) have been described as the main factor driving the Coronavirus Disease 2019 pandemic. In Brazil, the Gamma variant dominated the epidemiological scenario during the first period of 2021. Many Brazilian regions detected the Delta variant after its first description and documented its spread. To monitor the introduction and spread of VOC Delta, we performed Polymerase Chain Reaction (PCR) genotyping and genome sequencing in ten regional sentinel units from June to October 2021 in the State of Minas Gerais (MG). We documented the introduction and spread of Delta, comprising 70 per cent of the cases 8 weeks later. Comparing the viral loads of the Gamma and Delta dominance periods, we provide additional evidence that the latter is more transmissible. The spread and dominance of Delta did not culminate in the increase in cases and deaths, suggesting that the vaccination may have restrained the epidemic growth. Analysis of 224 novel Delta genomes revealed that Rio de Janeiro state was the primary source for disseminating this variant in the state of MG. We present the establishment of Delta, providing evidence of its enhanced transmissibility and showing that this variant shift did not aggravate the epidemiological scenario in a high immunity setting.
RESUMEN
Serum-based ELISA (enzyme-linked immunosorbent assay) has been widely used to detect anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies. However, to date, no study has investigated patient urine as a biological sample to detect SARS-CoV-2 virus-specific antibodies. An in-house urine-based ELISA was developed using recombinant SARS-CoV-2 nucleocapsid protein. The presence of SARS-CoV-2 antibodies in urine was established, with 94% sensitivity and 100% specificity for the detection of anti-SARS-CoV-2 antibodies with the urine-based ELISA and 88% sensitivity and 100% specificity with a paired serum-based ELISA. The urine-based ELISA that detects anti-SARS-CoV-2 antibodies is a noninvasive method with potential application as a facile COVID-19 immunodiagnostic platform, which can be used to report the extent of exposure at the population level and/or to assess the risk of infection at the individual level.
Asunto(s)
COVID-19 , Anticuerpos Antivirales , COVID-19/diagnóstico , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , SARS-CoV-2 , Sensibilidad y EspecificidadRESUMEN
Previous studies have indicated that antibody responses can be robustly induced after the vaccination in individuals previously infected by SARS-CoV-2. To evaluate anti-SARS-CoV-2 humoral responses in vaccinated individuals with or without a previous history of COVID-19, we compared levels of anti-SARS-CoV-2 antibodies in the sera from 21 vaccinees, including COVID-19-recovered or -naïve individuals in different times, before and after immunization with an inactivated COVID-19 vaccine. Anti-SARS-CoV-2-specific antibodies elicited after COVID-19 and/or immunization with an inactivated vaccine were measured by ELISA and Plaque Reduction Neutralizing assays. Antibody kinetics were consistently different between the two vaccine doses for naïve individuals, contrasting with the SARS-CoV-2-recovered subjects in which we observed no additional increase in antibody levels following the second dose. Sera from SARS-CoV2-naïve individuals had no detectable neutralizing activity against lineage B.1 SARS-CoV-2 or Gamma variant five months after the second vaccine dose. Contrarily, SARS-CoV-2-recovered subjects retained considerable neutralizing activity against both viruses. We conclude that a single inactivated SARS-CoV-2 vaccine dose may be sufficient to induce protective antibody responses in individuals with previous history of SARS-CoV-2 infection.
Asunto(s)
COVID-19 , Vacunas Virales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , ARN Viral , SARS-CoV-2RESUMEN
METHODS: A total of 1028 sera samples were used for the development and validation of ELISA (321 samples from L. infantum-infected patients, 62 samples from VL/AIDS coinfected patients, 236 samples from patients infected with other diseases, and 409 samples from healthy donors). A total of 520 sera samples were used to develop and validate ICT (249 samples from L. infantum-infected patients, 46 samples from VL/AIDS coinfected patients, 40 samples from patients infected with other diseases, and 185 samples from healthy donors). Findings. Using the validation sera panels, DTL-4-based ELISA displayed an overall sensitivity of 94.61% (95% CI: 89.94-97.28), a specificity of 99.41% (95% CI: 96.39-99.99), and an accuracy of 97.02% (95% CI: 94.61-98.38), while for ICT, sensitivity, specificity, and accuracy values corresponded to 91.98% (95% CI: 86.65-95.39), 100.00% (95% CI: 96.30-100.00), and 95.14% (95% CI: 91.62-97.15), respectively. When testing sera samples from VL/AIDS coinfected patients, DTL-4-ELISA displayed a sensitivity of 77.42% (95% CI: 65.48-86.16), a specificity of 99.41% (95% CI: 96.39-99.99), and an accuracy of 93.51% (95% CI: 89.49%-96.10%), while for DTL-4-ICT, sensitivity was 73.91% (95% CI: 59.74-84.40), specificity was 90.63% (95% CI: 81.02-95.63), and accuracy was 82.00% (95% CI: 73.63-90.91). CONCLUSION: DTL-4 is a promising candidate antigen for serodiagnosis of VL patients, including those with VL/AIDS coinfection, when incorporated into ELISA or ICT test formats.
Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Leishmaniasis Visceral/diagnóstico , Proteínas Protozoarias/inmunología , Proteínas Recombinantes de Fusión/inmunología , Pruebas Serológicas/métodos , Adulto , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Cromatografía de Afinidad/métodos , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Leishmania infantum/inmunología , Leishmaniasis Visceral/sangre , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Masculino , Proteínas Protozoarias/genética , Proteínas Recombinantes de Fusión/genética , Sensibilidad y EspecificidadRESUMEN
Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) to detect SARS-CoV-2 RNA is an essential test to monitor the occurrence of COVID-19. A methodology is proposed for the determination of maximum pool size and adjustments of cut-off values of cycle threshold (Ct in RT-qPCR pool testing, to compensate for the dilution caused by pooling. The trade-off between pool size and test sensitivity is stated explicitly. The procedure was designed to ensure that samples that would be detectable in individual testing remain detectable in pool testing. The proposed relaxation in cut-off is dependent on the pool size, allowing a relatively tight correction to avoid loss of detection of positive samples. The methodology was evaluated in a study of pool testing of adults attending a public emergency care unit, reference for COVID-19 in Belo Horizonte, Brazil, and presenting flu-like symptoms. Even samples on the edge of detectability in individual testing were detected correctly. The proposed procedure enhances the consistency of RT-qPCR pool testing by enforcing that the scales of detectability in pool processing and in individual sample processing are compatible. This may enhance the contribution of pool testing to large-scale testing for COVID-19.
Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/genética , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/diagnóstico , Prueba de Ácido Nucleico para COVID-19/normas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Adulto JovenRESUMEN
Accurate testing to detect SARS-CoV-2 RNA is key to counteract the virus spread. Nonetheless, the number of diagnostic laboratories able to perform qPCR tests is limited, particularly in developing countries. We describe the use of a virus-inactivating, denaturing solution (DS) to decrease virus infectivity in clinical specimens without affecting RNA integrity. Swab samples were collected from infected patients and from laboratory personnel using a commercially available viral transport solution and the in-house DS. Samples were tested by RT-qPCR, and exposure to infective viruses was also accessed by ELISA. The DS used did not interfere with viral genome detection and was able to maintain RNA integrity for up to 16 days at room temperature. Furthermore, virus loaded onto DS were inactivated, as attested by attempts to grow SARS-CoV-2 in cell monolayers after DS desalt filtration to remove toxic residues. The DS described here provides a strategy to maintain diagnostic accuracy and protects diagnostic laboratory personnel from accidental infection, as it has helped to protect our lab crew.
Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Estabilidad del ARN/efectos de los fármacos , ARN Viral/análisis , SARS-CoV-2/genética , Manejo de Especímenes/métodos , Pruebas Diagnósticas de Rutina , Genoma Viral/genética , Humanos , Desnaturalización Proteica/efectos de los fármacos , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/efectos de los fármacosRESUMEN
By analysing the evolution of the COVID-19 epidemic in the state of Minas Gerais, Brazil, we showed the importance of considering the sub-notification not only of deaths but also of infected cases. It was shown that the largely used criteria of a historical all-deaths baseline are not approachable in this case, where most of the deaths are associated with causes that should decrease due to social distancing and reduction of economic activities. A quite simple and intuitive model based on the Gompertz function was applied to estimate excess deaths and excess of infected cases. It fits well the data and predicts the evolution of the epidemic adequately. Based on these analyses, an excess of 21.638 deaths and 557.216 infected cases is predicted until the end of 2020, with an upper bound of the case fatality rate of around 2.4% and a prevalence of 2.6%. The geographical distribution of cases and deaths and its ethnic correlation are also presented. This study points out the necessity of governmental and private organizations working together to improve public awareness and stimulate social distancing to curb the viral infection, especially in critical places with high poverty.
Asunto(s)
COVID-19 , Animales , Brasil/epidemiología , COVID-19/epidemiología , Epidemias , Prevalencia , SARS-CoV-2RESUMEN
The Flaviviridae virus family was named after the Yellow-fever virus, and the latin term flavi means "of golden color". Dengue, caused by Dengue virus (DENV), is one of the most important infectious diseases worldwide. A sensitive and differential diagnosis is crucial for patient management, especially due to the occurrence of serological cross-reactivity to other co-circulating flaviviruses. This became particularly important with the emergence of Zika virus (ZIKV) in areas were DENV seroprevalence was already high. We developed a sensitive and specific diagnostic test based on gold nanorods (GNR) functionalized with DENV proteins as nanosensors. These were able to detect as little as one picogram of anti-DENV monoclonal antibodies and highly diluted DENV-positive human sera. The nanosensors could differentiate DENV-positive sera from other flavivirus-infected patients, including ZIKV, and were even able to distinguish which DENV serotype infected individual patients. Readouts are obtained in ELISA-plate spectrophotometers without the need of specific devices.
Asunto(s)
Técnicas Biosensibles/métodos , Dengue/diagnóstico , Resonancia por Plasmón de Superficie/métodos , Infección por el Virus Zika/diagnóstico , Anticuerpos Antivirales/sangre , Brasil , Estudios de Cohortes , Dengue/virología , Oro/química , Humanos , Nanopartículas del Metal/química , Estudios Seroepidemiológicos , Proteínas del Envoltorio Viral/inmunología , Infección por el Virus Zika/virologíaRESUMEN
BACKGROUND: For screening probiotic strains with viability and stability in non-dairy foods for health benefits, we revised all patents relating to probiotics in food. OBJECTIVE: Screening of potential probiotics from Brazilian Minas artisanal cheese and verify their survival in frozen Brazilian cocoa pulp. METHODS: Isolation and identification of the strains. The potential probiotic characterization involved gastric juice and bile resistance, antibiotic and antimicrobial activity, hydrophobicity, autoaggregation, coaggregation and adhesion assay in HT-29 cells. Organoleptic, viability and stability of probiotic strain in frozen cocoa pulp were evaluated. RESULTS: Fourteen strains of Lactobacillus plantarum (9), Weissella paramesenteroides (3), Lactobacillus fermentum (1), and Leuconostoc mesenteroides (1) were obtained. Most of the strains were resistant to simulated gastric acidity and bile salts. Almost all strains were sensitive to the antibiotics tested, except to ciprofloxacin and vancomycin. About 47% of the strains are potential producers of bacteriocins. High hydrophobicity was observed for four strains. Autoaggregation ranged from 8.3-72.6% and the coaggregation capacity from 5.2-60.2%. All of the assessed strains presented more than 90% of adhesion to HT-29 intestinal cells. The percentage of Salmonella inhibition in HT-29 cells ranged from 4.7-31.1%. No changes in color, aroma, and pH were observed in cocoa pulps after storage at -20 °C for 90 days. CONCLUSION: Wild strains of acid lactic bacteria from cheese proved to be viable and stable in frozen Brazilian cocoa pulp. This work showed a promising application of L. plantarum isolated strains to be used with frozen cocoa pulp matrix in probiotics food industry.
Asunto(s)
Cacao , Queso/microbiología , Lactobacillus plantarum/crecimiento & desarrollo , Viabilidad Microbiana , Probióticos/administración & dosificación , Congelación , Humanos , Residuos Industriales , Lactobacillus , Limosilactobacillus fermentum/crecimiento & desarrollo , Leuconostoc mesenteroides/crecimiento & desarrollo , Patentes como Asunto , Semillas , Weissella/crecimiento & desarrolloRESUMEN
Dengue is currently one of the most important arbovirus infections worldwide. Early diagnosis is important for disease outcome, particularly for those afflicted with the severe forms of infection. The goal of this work was to identify conserved and polymorphic linear B-cell Dengue virus (DENV) epitopes that could be used for diagnostic purposes. To this end, we aligned the predicted viral proteome of the four DENV serotype and performed in silico B-cell epitope mapping. We developed a script in Perl integrating alignment and prediction information to identify potential serotype-specific epitopes. We excluded epitopes that were similarly present in the yellow fever and zika viruses' proteomes. A total of 15 polymorphic and nine conserved peptides among DENV serotypes were selected. Peptides were spotted on cellulose membranes and tested against sera from rabbits that were monoinfected with each DENV serotype. Although serotype-specific peptides failed to recognize any sera, three conserved peptides were recognized by all anti-dengue sera and were included on an ELISA test employing a well-characterized human sera bank. Of the three peptides, one was able to efficiently identify sera from all four DENV serotypes and to discriminate them from Zika virus positive sera.