Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1420226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139374

RESUMEN

Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is an important public health problem, occurring mainly in Latin America. The disease has a major social and economical effect, negatively impacting the life of the infected individuals, and bringing great costs to public health. An early and accurate diagnosis is essential for administration of early treatment. In addition, prognostic tests may aid disease management, decreasing hospitalization costs. However, the serological diagnostic scenario for CD still faces several challenges, making the development of new diagnostic kits a pressing matter. Facing this scenario, several researchers have expanded efforts in developing and testing new antigens, such as recombinant proteins and recombinant multiepitope proteins, with promising results. These recombinant antigens offer several advantages, such as improved sensitivity and specificity, in addition to facilitated scaling. Also, it has been possible to observe a rising number of studies using ELISA and point-of-care platforms, employing these antigens in the past few years. Among them, recombinant proteins were the most applied antigens, demonstrating great capacity to discriminate between positive and negative samples. Although fewer in number, recombinant multiepitope proteins also demonstrated an improved diagnostic performance. Indeed, a great number of studies employing these antigens showed sensitivity and specificity values above 90%, greatly impacting diagnostic accuracy. Nevertheless, despite the good results found, it is still possible to observe some bottlenecks in the development of new antigens, such as the scarcity of tests with sera from the acute phase and the variability of results in different geographic areas. In this sense, aiming to contribute to control and health programs, the continuous search for a more accurate serological diagnosis is essential, both for the acute and chronic phases of the disease.

2.
Biomedicines ; 12(7)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39062074

RESUMEN

Rocky Mountain or Brazilian spotted fever, caused by Rickettsia rickettsii, is a fulminant, seasonal, and neglected disease that occurs in focal points of North America and South America. Its rapid detection is essential for the better prognosis and survival rate of infected individuals. However, disease diagnosis still faces challenges as the accuracy of many of the available laboratory tests fluctuates. This review aimed to analyze methods for antibody or antigen detection, their gaps, and their evolution over time. A search was conducted to find all studies in the Pubmed database that described the antibody or antigen detection of R. rickettsii infections. Initially, a total of 403 articles were screened. Of these articles, only 17 fulfilled the pre-established inclusion criteria and were selected. Among the different methods applied, the IFA technique was the one most frequently found in the studies. However, it presented varied results such as a low specificity when using the indirect method. Other techniques, such as ELISA and immunohistochemistry, were also found, although in smaller numbers and with their own limitations. Although some studies showed promising results, there is a pressing need to find new techniques to develop a rapid and effective diagnosis of R. rickettssi infection.

3.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928197

RESUMEN

Breast cancer stands as one of the foremost cause of cancer-related deaths globally, characterized by its varied molecular subtypes. Each subtype requires a distinct therapeutic strategy. Although advancements in treatment have enhanced patient outcomes, significant hurdles remain, including treatment toxicity and restricted effectiveness. Here, we explore the anticancer potential of novel 1,4-naphthoquinone/4-quinolone hybrids on breast cancer cell lines. The synthesized compounds demonstrated selective cytotoxicity against Luminal and triple-negative breast cancer (TNBC) cells, which represent the two main molecular types of breast cancer that depend most on cytotoxic chemotherapy, with potency comparable to doxorubicin, a standard chemotherapeutic widely used in breast cancer treatment. Notably, these derivatives exhibited superior selectivity indices (SI) when compared to doxorubicin, indicating lower toxicity towards non-tumor MCF10A cells. Compounds 11a and 11b displayed an improvement in IC50 values when compared to their precursor, 1,4-naphthoquinone, for both MCF-7 and MDA-MB-231 and a comparable value to doxorubicin for MCF-7 cells. Also, their SI values were superior to those seen for the two reference compounds for both cell lines tested. Mechanistic studies revealed the ability of the compounds to induce apoptosis and inhibit clonogenic potential. Additionally, the irreversibility of their effects on cell viability underscores their promising therapeutic utility. In 3D-cell culture models, the compounds induced morphological changes indicative of reduced viability, supporting their efficacy in a more physiologically relevant model of study. The pharmacokinetics of the synthesized compounds were predicted using the SwissADME webserver, indicating that these compounds exhibit favorable drug-likeness properties and potential as antitumor agents. Overall, our findings underscore the promise of these hybrid compounds as potential candidates for breast cancer chemotherapy, emphasizing their selectivity and efficacy.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Naftoquinonas , Humanos , Naftoquinonas/farmacología , Naftoquinonas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Células MCF-7 , Quinolonas/farmacología , Quinolonas/química , Apoptosis/efectos de los fármacos , Técnicas de Cultivo Tridimensional de Células/métodos , Doxorrubicina/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
4.
Microb Cell Fact ; 23(1): 145, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778337

RESUMEN

Recombinant multiepitope proteins (RMPs) are a promising alternative for application in diagnostic tests and, given their wide application in the most diverse diseases, this review article aims to survey the use of these antigens for diagnosis, as well as discuss the main points surrounding these antigens. RMPs usually consisting of linear, immunodominant, and phylogenetically conserved epitopes, has been applied in the experimental diagnosis of various human and animal diseases, such as leishmaniasis, brucellosis, cysticercosis, Chagas disease, hepatitis, leptospirosis, leprosy, filariasis, schistosomiasis, dengue, and COVID-19. The synthetic genes for these epitopes are joined to code a single RMP, either with spacers or fused, with different biochemical properties. The epitopes' high density within the RMPs contributes to a high degree of sensitivity and specificity. The RMPs can also sidestep the need for multiple peptide synthesis or multiple recombinant proteins, reducing costs and enhancing the standardization conditions for immunoassays. Methods such as bioinformatics and circular dichroism have been widely applied in the development of new RMPs, helping to guide their construction and better understand their structure. Several RMPs have been expressed, mainly using the Escherichia coli expression system, highlighting the importance of these cells in the biotechnological field. In fact, technological advances in this area, offering a wide range of different strains to be used, make these cells the most widely used expression platform. RMPs have been experimentally used to diagnose a broad range of illnesses in the laboratory, suggesting they could also be useful for accurate diagnoses commercially. On this point, the RMP method offers a tempting substitute for the production of promising antigens used to assemble commercial diagnostic kits.


Asunto(s)
Epítopos , Escherichia coli , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/inmunología , Humanos , Epítopos/inmunología , Epítopos/genética , Pruebas Inmunológicas/métodos , Animales , COVID-19/diagnóstico
5.
Amino Acids ; 56(1): 35, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698213

RESUMEN

Chagas disease, caused by the protozoa Trypanosoma cruzi, continues to be a serious public health problem in Latin America, worsened by the limitations in its detection. Given the importance of developing new diagnostic methods for this disease, the present review aimed to verify the number of publications dedicated to research on peptides that demonstrate their usefulness in serodiagnosis. To this end, a bibliographic survey was conducted on the PubMed platform using the keyword "peptide" or "epitope" combined with "Chagas disease" or "Trypanosoma cruzi"; "diagno*" or "serodiagnosis" or "immunodiagnosis", without period restriction. An increasing number of publications on studies employing peptides in ELISA and rapid tests assays was verified, which confirms the expansion of research in this field. It is possible to observe that many of the peptides tested so far originate from proteins widely used in the diagnosis of Chagas, and many of them are part of commercial tests developed. In this sense, as expected, promising results were obtained for several peptides when tested in ELISA, as many of them exhibited sensitivity and specificity values above 90%. Furthermore, some peptides have been tested in several studies, confirming their diagnostic potential. Despite the promising results observed, it is possible to emphasize the need for extensive testing of peptides, using different serological panels, in order to confirm their potential. The importance of producing an effective assay capable of detecting the clinical stages of the disease, as well as new immunogenic antigens that enable new serological diagnostic tools for Chagas disease, is evident.


Asunto(s)
Enfermedad de Chagas , Ensayo de Inmunoadsorción Enzimática , Péptidos , Trypanosoma cruzi , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/sangre , Humanos , Trypanosoma cruzi/inmunología , Péptidos/inmunología , Péptidos/química , Ensayo de Inmunoadsorción Enzimática/métodos , Pruebas Inmunológicas/métodos , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/sangre , Pruebas Serológicas/métodos
6.
Curr Med Chem ; 31(30): 4763-4780, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38509682

RESUMEN

Improving the diagnostic technology used to detect tegumentary leishmaniasis (TL) is essential in view of it being a widespread, often neglected tropical disease, with cases reported from the Southern United States to Northern Argentina. Recombinant proteins, recombinant multiepitope proteins, and synthetic peptides have been extensively researched and used in disease diagnosis. One of the benefits of applying these antigens is a measurable increase in sensitivity and specificity, which improves test accuracy. The present review aims to describe the use of these antigens and their diagnostic effectiveness. With that in mind, a bibliographic survey was conducted on the PudMed platform using the search terms "tegumentary leishmaniasis" AND "diagno", revealing that recombinant proteins have been described and evaluated for their value in TL diagnosis since the 1990s. However, there was a spike in the number of publications using all of the antigens between 2013 and 2022, confirming an expansion in research efforts to improve diagnosis. Moreover, all of the studies involving different antigens had promising results, including improved sensitivity and specificity. These data recognize the importance of doing research with new technologies focused on developing quick, more effective diagnostic kits as early diagnosis facilitates treatment.


Asunto(s)
Antígenos de Protozoos , Leishmaniasis Cutánea , Proteínas Recombinantes , Antígenos de Protozoos/inmunología , Humanos , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/biosíntesis , Leishmaniasis Cutánea/diagnóstico , Leishmaniasis Cutánea/inmunología , Pruebas Inmunológicas/métodos
7.
Artículo en Inglés | MEDLINE | ID: mdl-38321899

RESUMEN

INTRODUCTION: Active targeting of tumors by nanomaterials favors early diagnosis and the reduction of harsh side effects of chemotherapeuticals. METHOD: We synthesized magnetic nanoparticles (64 nm; -40 mV) suspended in a magnetic fluid (MF) and decorated them with anti-carcinoembryonic antigen (MFCEA; 144 nm; -39 mV). MF and MFCEA nanoparticles were successfully radiolabeled with technetium-99m (99mTc) and intravenously injected in CEA-positive 4T1 tumor-bearing mice to perform biodistribution studies. Both 99mTc-MF and 99mTc-MFCEA had marked uptake by the liver and spleen, and the renal uptake of 99mTc-MFCEA was higher than that observed for 99mTc-MF at 20h. At 1 and 5 hours, the urinary excretion was higher for 99mTc-MF than for 99mTc-MFCEA. RESULTS: These data suggest that anti-CEA decoration might be responsible for a delay in renal clearance. Regarding the tumor, 99mTc-MFCEA showed tumor uptake nearly two times higher than that observed for 99mTc-MFCEA. Similarly, the target-nontarget ratio was higher with 99mTc-MFCEA when compared to the group that received the 99mTc-MF. CONCLUSION: These data validated the ability of active tumor targeting by the as-developed antiCEA loaded nanoparticles and are very promising results for the future development of a nanodevice for the management of breast cancer and other types of CEA-positive tumors.

8.
Eur J Med Chem ; 266: 116135, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38219659

RESUMEN

Cyclooxygenase enzymes have distinct roles in cardiovascular, neurological, and neurodegenerative disease. They are differently expressed in different type of cancers. Specific and selective COXs inhibitors are needed to be used alone or in combo-therapies. Fully understand the differences at the catalytic site of the two cyclooxygenase (COX) isoforms is still opened to investigation. Thus, two series of novel compounds were designed and synthesized in fair to good yields using the highly selective COX-1 inhibitor mofezolac as the lead compound to explore a COX-1 zone formed by the polar residues Q192, S353, H90 and Y355, as well as hydrophobic amino acids I523, F518 and L352. According to the structure of the COX-1:mofezolac complex, hydrophobic amino acids appear to have free volume eventually accessible to the more sterically hindering groups than the methoxy linked to the phenyl groups of mofezolac, in particular the methoxyphenyl at C4-mofezolac isoxazole. Mofezolac bears two methoxyphenyl groups linked to C3 and C4 of the isoxazole core ring. Thus, in the novel compounds, one or both methoxy groups were replaced by the higher homologous ethoxy, normal and isopropyl, normal and tertiary butyl, and phenyl and benzyl. Furthermore, a major difference between the two sets of compounds is the presence of either a methyl or acetic moiety at the C5 of the isoxazole. Among the C5-methyl series, 12 (direct precursor of mofezolac) (COX-1 IC50 = 0.076 µM and COX-2 IC50 = 0.35 µM) and 15a (ethoxy replacing the two methoxy groups in 12; COX-1 IC50 = 0.23 µM and COX-2 IC50 > 50 µM) were still active and with a Selectivity Index (SI = COX-2 IC50/COX-1 IC50) = 5 and 217, respectively. The other symmetrically substituted alkoxyphenyl moietis were inactive at 50 µM final concentration. Among the asymmetrically substituted, only the 16a (methoxyphenyl on C3-isoxazole and ethoxyphenyl on C4-isoxazole) and 16b (methoxyphenyl on C3-isoxazole and n-propoxyphenyl on C4-isoxazole) were active with SI = 1087 and 38, respectively. Among the set of compounds with the acetic moiety, structurally more similar to mofezolac (SI = 6329), SI ranged between 1.4 and 943. It is noteworthy that 17b (n-propoxyphenyl on both C3- and C4-isoxazole) were found to be a COX-2 slightly selective inhibitor with SI = 0.072 (COX-1 IC50 > 50 µM and COX-2 IC50 = 3.6 µM). Platelet aggregation induced by arachidonic acid (AA) can be in vitro suppressed by the synthesized compounds, without affecting of the secondary hemostasia, confirming the biological effect provided by the selective inhibition of COX-1. A positive profile of hemocompatibility in relation to erythrocyte and platelet toxicity was observed. Additionally, these compounds exhibited a positive profile of hemocompatibility and reduced cytotoxicity. Quantitative structure activity relationship (QSAR) models and molecular modelling (Ligand and Structure based virtual screening procedures) provide key information on the physicochemical and pharmacokinetic properties of the COX-1 inhibitors as well as new insights into the mechanisms of inhibition that will be used to guide the development of more effective and selective compounds. X-ray analysis was used to confirm the chemical structure of 14 (MSA17).


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Estructura Molecular , Ciclooxigenasa 2/metabolismo , Dominio Catalítico , Relación Estructura-Actividad , Ciclooxigenasa 1/metabolismo , Isoxazoles/química , Antiinflamatorios no Esteroideos/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/química , Aminoácidos
9.
Curr Mol Med ; 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37461338

RESUMEN

BACKGROUND: Monkeypox is a global public health issue caused by the monkeypox virus (MPXV). As of October 28, 2022, a total of 77,115 laboratory-confirmed cases and 3,610 probable cases, including 36 deaths, were reported, with 9,070 cases reported in Brazil, the second most affected country. The need to develop national technologies for the rapid diagnosis of emerging diseases for mass testing of the population is evident, as observed in the SARS-CoV-2 pandemic. OBJECTIVE: With that in mind, this article provides an overview of current methods, techniques, and their applications in the molecular detection of monkeypox, focusing the search on real-time polymerase chain reaction (qPCR), polymerase chain reaction (PCR), and polymerase chain reaction-enzyme linked immunosorbent assay (PCR-ELISA). METHODS: The relevant documents or papers covered in this study were selected by a search in international bibliographic databases. The search terms used in the databases were aimed at summarizing existing knowledge on molecular diagnostic methods, such as monkeypox; MPX, MPXV, qPCR, PCR, PCR-ELISA, diagnosis and detection searched separately or together using the Boolean operator "AND" either in the title or abstract. The searches took place in September 2022, and the corresponding articles were selected between 2012 and 2022. RESULTS: We found 256 documents in total and twelve studies addressing the molecular diagnosis of monkeypox were classified as possible sources for this review. CONCLUSION: It is evident there is a pressing need to develop national technologies for rapid diagnosis of emerging diseases for mass testing of the population. It is also extremely important to have national detection kits with greater diagnostic capacity to assist in developing effective public policies in countries affected by this disease.

10.
Eur J Pharm Biopharm ; 190: 184-196, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37517449

RESUMEN

Rivaroxaban (RVX), an oral direct factor Xa inhibitor, is being explored as an alternative to traditional anticoagulans. However, RVX still faces pharmacokinetic limitations and adverse effects, highlighting the need for more effective formulations. In this regard, pharmaceutical nanotechnology, particularly the use of polymeric nanoparticles (PNPs), offers a promising approach for optimizing RVX delivery. This study aimed to develop and physicochemically characterize RVX-loaded poly(lactic-co-glycolic acid) (PLGA)/sodium lauryl sulfate (SLS) or didodecyl dimethylammonium bromide (DMAB) nanoparticles, and also evaluate their pharmacological and toxicological profiles as a potential therapeutic strategy. The PNPs exhibited sizes below 300 nm and spherical morphology, with both negative and positive surface charges, according to surfactant used. They demonstrated high encapsulation efficiency and suitable yields, as well as rapid initial liberation followed by sustained release in different pH environments. Importantly, in vivo evaluations revealed a time-dependent antithrombotic effect surpassing the free form of RVX when administered orally in SLS or DMAB PNP. No hemolytic or cytotoxic effects were observed at various concentrations of the PNPs. Interestingly, the PNPs did not induce hemorrhagic events or cause liver enzyme alterations in vivo. These findings suggest that RVX-loaded SLS or DMAB PNPs are promising innovative therapeutic alternatives for the treatment of thromboembolic diseases.


Asunto(s)
Nanopartículas , Ácido Poliglicólico , Ratas , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratas Wistar , Ácido Poliglicólico/química , Dodecil Sulfato de Sodio , Rivaroxabán , Bromuros , Fibrinolíticos/farmacología , Ácido Láctico/química , Glicoles , Nanopartículas/química , Tamaño de la Partícula
11.
Curr Mol Med ; 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37143281

RESUMEN

BACKGROUND: schistosomiasis is a neglected tropical parasitic disease caused by trematode worms of the genus schistosoma, which affects approximately 240 million people worldwide. the diagnosis of the disease can be performed by parasitological, molecular, and/or immunological methods, however, the development of new diagnostic methods still essential to guide policy decisions, monitor disease trends and assess the effectiveness of interventions. OBJECTIVE: in this sense, the current work summarizes the findings of a systematic review regarding antigens applied in the enzyme-linked immunosorbent assay test, which were patented and published over the last ten years. METHODS: the literature search strategy used medical subject heading (mesh) terms to define as descriptors. "schistosoma mansoni" was used in arrangement with the descriptors "immunoassay", "enzyme-linked immunosorbent assay", "elisa", and "antigens", using the "and" connector. the patent search was done using keywords, including diagnosis and schistosoma or schistosomiasis or schistosome. several databases were employed for the patent search, such as intellectual property national institute; european patent office; the united states patent and trademark office; patent scope, and google patents. RESULTS: forty-one articles were retrieved, of which only five met the eligibility criteria. seventeen patents were taken from the databases, and a brief description of the most relevant inventions is given here. CONCLUSION: schistosomiasis is considered the most important helminthic disease in worldwide. therefore, it is important to of searching for and develops diagnostic methods based on serology to reduce morbidity and mortality caused by the disease.

12.
Protein Pept Lett ; 30(5): 374-383, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998139

RESUMEN

Monkeypox is a zoonosis that re-emerged in 2022, generating cases in non-endemic countries for the disease and creating a public health issue. The rapid increase in the number of cases kindles a need for quick, inexpensive diagnostic tests for the epidemiological control of the disease. The high cost of molecular tests can make this control more difficult to access in poorer regions, with immunological tests being a more viable option. In this mini-review, a search was conducted in the main databases for peptide and protein options that could be used in the development of serological diagnostic tests. Nine viable registres were found, and seven were selected (two patents and five studies). The main studies used the B21R peptide sequence as it is a high immunogenic epitope. In addition, studies on the improvement of these sequences were also found to avoid cross-reactions against other viruses of the same family, proposing a rational approach using multiepitope recombinant proteins. These approaches demonstrated high sensitivity and specificity values and are seen as viable options for developing new tests. New effective serological testing options, when combined with awareness, disease surveillance, early diagnosis, and rapid communication, form a set of key strategies used by health systems to control the spread of the monkeypox virus.


Asunto(s)
Mpox , Humanos , Mpox/epidemiología , Péptidos , Secuencia de Aminoácidos , Proteínas Recombinantes , Pruebas Serológicas
13.
Pathogens ; 12(2)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36839574

RESUMEN

BACKGROUND: visceral leishmaniasis (VL) is a critical public health problem in over ninety countries. The control measures adopted in Brazil have been insufficient when it comes to preventing the spread of this overlooked disease. In this context, a precise diagnosis of VL in dogs and humans could help to reduce the number of cases of this disease. Distinct studies for the diagnosis of VL have used single recombinant proteins in serological assays; however, the results have been variable, mainly in relation to the sensitivity of the antigens. In this context, the development of multiepitope-based proteins could be relevant to solving such problem. METHODS: a chimeric protein (rMELEISH) was constructed based on amino acid sequences from kinesin 39 (k39), alpha-tubulin, and heat-shock proteins HSP70 and HSP 83.1, and tested in enzyme-linked immunosorbent (ELISA) for the detection of L. infantum infection using canine (n = 140) and human (n = 145) sera samples. RESULTS: in the trials, rMELEISH was able to discriminate between VL cases and cross-reactive diseases and healthy samples, with sensitivity and specificity values of 100%, as compared to the use of a soluble Leishmania antigenic extract (SLA). CONCLUSIONS: the preliminary data suggest that rMELEISH has the potential to be tested in future studies against a larger serological panel and in field conditions for the diagnosis of canine and human VL.

14.
Pathogens ; 12(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36839584

RESUMEN

Chagas disease remains a neglected disease that is considered to be a public health problem. The early diagnosis of cases is important to improve the prognosis of infected patients and prevent transmission. Serological tests are the method of choice for diagnosis. However, two serological tests are currently recommended to confirm positive cases. In this sense, more sensitive and specific serological tests need to be developed to overcome these current diagnosis problems. This study aimed to develop a new recombinant multiepitope protein for the diagnosis of Chagas disease, hereafter named rTC. The rTC was constructed based on amino acid sequences from different combinations of Trypanosoma cruzi antigens in the same polypeptide and tested using an enzyme-linked immunosorbent assay (ELISA) to detect different types of Chagas disease. rTC was able to discriminate between indeterminate (IND) and cardiac (CARD) cases and cross-reactive diseases, as well as healthy samples, with 98.28% sensitivity and 96.67% specificity, respectively. These data suggest that rTC has the potential to be tested in future studies against a larger serological panel for the diagnosis of Chagas disease.

15.
Recent Pat Biotechnol ; 17(4): 332-345, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36056838

RESUMEN

BACKGROUND: Rubella, caused by the Rubella virus (RV), is considered a mild self-limited illness. However, RV has teratogenic potential. Laboratory investigation plays an important role in both diagnosis and surveillance of the disease. The main methods for diagnosing Rubella are serological assays for the detection of specific IgM and molecular assays for detecting viral RNA. However, some laboratories perform IgG avidity testing, virus isolation and analysis of genetic sequence as tools to help Rubella eradication. The importance of the diagnosis of Rubella involves the appropriate treatment of the disease, because the Rubella clinical symptoms may be similar to those of other diseases, and the population monitoring to avoid new emergent cases. This study addresses different methods of diagnosing Rubella and contributes as a source of knowledge to assist health systems in controlling the disease. OBJECTIVE: The main objective of this study was to review the available patents regarding Rubella diagnosis published in intellectual property databases, and provides an overview of the technologies available for the diagnosis of Rubella. METHOD: The search strategy was based on the keywords searched separately or together using a Boolean operator either in the patent title or abstract the time interval was restricted to patents filed or granted from January 2009 until February 2022. The database used was Google Patents. RESULTS: This study analyzed 24 patent documents regarding strategies for the diagnosis of Rubella. Of these, 15 patents disclose strategies for detecting Rubella antibodies, 7 patents the detection of Rubella virus nucleic acid, and 2 patents the production of antibodies applied in Rubella diagnosis. CONCLUSION: Rubella is still a public health problem in some countries, mainly those in development, especially due to congenital Rubella syndrome, which can cause malformation or fetal death. However, its diagnosis is challenging, due to similarity of symptoms with other diseases, and for this reason, laboratory diagnosis is essential. Studies like this encourage researchers and governments to invest in research to continue the development of new products, using different areas of biotechnology, to solve society's problems, especially diseases that have an impact on global health, such as Rubella.


Asunto(s)
Patentes como Asunto , Rubéola (Sarampión Alemán) , Humanos , Biotecnología , Rubéola (Sarampión Alemán)/diagnóstico , Rubéola (Sarampión Alemán)/epidemiología , Virus de la Rubéola/genética
16.
Curr Pharm Biotechnol ; 23(8): 1094-1100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34493182

RESUMEN

BACKGROUND: Rubella is an infection caused by rubella virus (RV) and is generally regarded as a mild childhood disease. The disease continues to be of public health importance mainly because when the infection is acquired during early pregnancy, it often results in fetal abnormalities, which are classified as congenital rubella syndrome (CRS). An accurate diagnosis of rubella is thus of pivotal importance for proper treatment. OBJECTIVES: The aim of the study was to produce a recombinant multiepitope protein (rMERUB) for the diagnosis of rubella, based on conserved immunodominant epitopes of glycoprotein E1 and E2. METHODS: A synthetic gene was designed and cloned into vector pET21a with a 6xHis tag at the Cterminal for affinity purification and overexpressed in Escherichia coli cells. Biophysical analysis of rMERUB was performed by circular dichroism. Biological activity was assessed using an in-house ELISA assay. RESULTS: Expression in Escherichia coli showed a ~22 kDa protein that was purified and used to perform structural assays and an IgG ELISA. Structural analyses reveal that rMERUB has a ß leaf pattern that promotes the exposure of epitopes, thus allowing antibody recognition. Evaluation of 33 samples (22=positive; 11=negative) was performed using in-house ELISA and this was compared with a commercial kit. The sensitivity was 100% (95% CI: 85-100) and specificity 90.91% (95% CI: 62-99). Excellent agreement (Kappa index = 0.9) was obtained between ELISA assays. CONCLUSION: The careful choice of epitopes and the high epitope density, coupled with simple-step purification, pinpoints rMERUB as a promising alternative for rubella diagnosis, with potential for the development of a diagnostic kit.


Asunto(s)
Anticuerpos Antivirales , Rubéola (Sarampión Alemán) , Niño , Ensayo de Inmunoadsorción Enzimática/métodos , Epítopos/genética , Escherichia coli/genética , Femenino , Humanos , Embarazo , Proteínas Recombinantes/genética , Rubéola (Sarampión Alemán)/diagnóstico , Pruebas Serológicas
17.
Biomed Mater ; 16(3)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33540396

RESUMEN

Systemic therapy is generally required for breast cancer. However, treatment toxicity and side effects are a concern, especially for triple-negative breast cancer (TNBC), a subtype that usually develops resistance to chemotherapy. To overcome this issue, new nanoformulations capable of targeting cancer cells have been developed and alternative biomarkers have been explored as target molecules for TNBC management. In this study, we performed anin vivoassay in a murine orthotopic TNBC model to evaluate the targeting ability of anti-carcinoembryonic antigen (anti-CEA) loaded nanoparticles (labelled MFCEA), which had been previously synthetized by our research group. 4T1 cells were injected in the mammary gland of balb-c mice, and tumors were evaluated for CEA expression by immunohistochemistry. Tumor-bearing mice received targeted (MFCEA) and non-targeted (MF) nanoparticles intraperitoneally. Tumors were removed 1, 4, 15 and 24 h after treatment, and Prussian blue iron staining was performed. Our results showed, as far as we know for the first time, that 4T1 induced tumors are CEA positive, and this opens up new prospects for treating TNBC. Furthermore, MFCEA nanoparticles were able to target malignant tissue and were retained in the tumor for longer than MF nanoparticles. The retention property of MFCEA, together with the absence of toxicity observed in the MTT assay, make these nanoparticles a promising device for management of CEA positive tumors and perhaps for TNBC. Nevertheless, further studies must be carried out to improve their performance and ensure safety for clinical studies.


Asunto(s)
Nanopartículas , Neoplasias de la Mama Triple Negativas , Animales , Antígeno Carcinoembrionario/uso terapéutico , Línea Celular Tumoral , Humanos , Hierro , Ratones , Nanopartículas/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
18.
Recent Pat Biotechnol ; 15(1): 12-24, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33504319

RESUMEN

BACKGROUND: Coronaviruses have caused outbreaks of respiratory disease since the beginning of the 21st century, representing a significant threat to public health. Together, the severe acute respiratory syndrome coronavirus (SARS-CoV), the respiratory syndrome coronavirus (MERS-CoV), and, more recently, the novel coronavirus (SARS-CoV-2) have caused a large number of deaths around the world. Thus, investments in research and the development of strategies aimed at diagnosing, treating, and preventing these infections are urgently needed. OBJECTIVE: The objective of this study was to analyze the patents that address pathogenic coronaviruses in Google Patents databases in the last year (2019-2020). METHODS: The search strategy was carried out in April 2020, based on the keywords "SARS", "SARS-CoV", "MERS", "MERS-CoV", "SARS-CoV-2" and "COVID-19. Out of the patents examined, 25 were selected for a short description in this study. RESULTS: A total of 191 patents were analyzed, 149 of which were related to SARS-CoV, and 29 and 12 were related to MERS-CoV and SARS- CoV2, respectively. The patents addressed the issues of diagnosis, therapeutic agents, prevention and control, along with other applications. CONCLUSION: Several promising strategies have been documented in intellectual property databases favoring the need for further studies on the pathogenesis and optimization of the diagnosis and therapeutic treatment for these emerging infections.


Asunto(s)
Coronavirus del Síndrome Respiratorio de Oriente Medio , Patentes como Asunto , SARS-CoV-2 , COVID-19/virología , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/patogenicidad , Virulencia
19.
Int J Biol Macromol ; 169: 330-341, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33310092

RESUMEN

Vancomycin-loaded N,N-dodecyl,methyl-polyethylenimine nanoparticles coated with hyaluronic acid (VCM-DMPEI nanoparticles/HA) were synthesized as an adjuvant for the treatment of bacterial endophthalmitis. The nanoparticles were formulated by experimental statistical design, thoroughly characterized, and evaluated in terms of bactericidal activity and both in vitro and in vivo ocular biocompatibility. The VCM-DMPEI nanoparticles/HA were 154 ± 3 nm in diameter with a 0.197 ± 0.020 polydispersity index; had a + 26.4 ± 3.3 mV zeta potential; exhibited a 93% VCM encapsulation efficiency; and released 58% of the encapsulated VCM over 96 h. VCM and DMPEI exhibited a synergistic bactericidal effect. The VCM-DMPEI nanoparticles/HA were neither toxic to ARPE-19 cells nor irritating to the chorioallantoic membrane. Moreover, the VCM-DMPEI nanoparticles/HA did not induce modifications in retinal functions, as determined by electroretinography, and in the morphology of the ocular tissues. In conclusion, the VCM-DMPEI nanoparticles/HA may be a useful therapeutic adjuvant to treat bacterial endophthalmitis.


Asunto(s)
Endoftalmitis/tratamiento farmacológico , Polietileneimina/análogos & derivados , Vancomicina/farmacología , Antibacterianos/farmacología , Línea Celular , Portadores de Fármacos , Liberación de Fármacos , Ojo/efectos de los fármacos , Humanos , Ácido Hialurónico/metabolismo , Ácido Hialurónico/farmacología , Nanopartículas , Tamaño de la Partícula , Polietileneimina/química , Polietileneimina/farmacología , Vancomicina/química
20.
Res Vet Sci ; 126: 4-8, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31415928

RESUMEN

Canine leishmaniosis (CanL) is one of the most important parasitic diseases found in several countries worldwide. Dogs are considered important domestic reservoirs of the parasites, being relevant in the maintenance of transmission cycle of the disease between sandflies and humans. However, the prevalence of asymptomatic infection is considerably higher than that of apparent clinical illness in the infected animals; thus making promptly necessary to diagnose the infection in these animals, which could help to allow to the adoption of more efficient control measures against disease. Parasitological tests, which are considered as gold standard to demonstrate the infection and diagnose the disease, present problems related with their sensitivity. Also, the sample´s collect is considered invasive. As consequence, serological tests could be applied as an additional tool to detect the asymptomatic and symptomatic CanL. For this purpose, distinct recombinant antigens have been studied; however, problems in their sensitivity and/or specificity have been still registered. The present review focus in advances in the identification of new diagnostic targets applied for the CanL diagnose, represented here by recombinant single, combined or chimeric proteins, as well as by peptides that mimic epitopes (mimotopes); which were selected by means of immunoproteomics and phage display.


Asunto(s)
Enfermedades de los Perros/diagnóstico , Leishmania infantum/inmunología , Leishmaniasis/veterinaria , Pruebas Serológicas/veterinaria , Animales , Bacteriófagos , Enfermedades de los Perros/parasitología , Perros , Epítopos , Humanos , Leishmaniasis/diagnóstico , Péptidos , Proteínas Recombinantes , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA