Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurochem ; 164(2): 158-171, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36349509

RESUMEN

Leprosy is a chronic infectious disease caused by Mycobacterium leprae infection in Schwann cells. Axonopathy is considered a hallmark of leprosy neuropathy and is associated with the irreversible motor and sensory loss seen in infected patients. Although M. leprae is recognized to provoke Schwann cell dedifferentiation, the mechanisms involved in the contribution of this phenomenon to neural damage remain unclear. In the present work, we used live M. leprae to infect the immortalized human Schwann cell line ST8814. The neurotoxicity of infected Schwann cell-conditioned medium (SCCM) was then evaluated in a human neuroblastoma cell lineage and mouse neurons. ST8814 Schwann cells exposed to M. leprae affected neuronal viability by deviating glial 14 C-labeled lactate, important fuel of neuronal central metabolism, to de novo lipid synthesis. The phenolic glycolipid-1 (PGL-1) is a specific M. leprae cell wall antigen proposed to mediate bacterial-Schwann cell interaction. Therefore, we assessed the role of the PGL-1 on Schwann cell phenotype by using transgenic M. bovis (BCG)-expressing the M. leprae PGL-1. We observed that BCG-PGL-1 was able to induce a phenotype similar to M. leprae, unlike the wild-type BCG strain. We next demonstrated that this Schwann cell neurotoxic phenotype, induced by M. leprae PGL-1, occurs through the protein kinase B (Akt) pathway. Interestingly, the pharmacological inhibition of Akt by triciribine significantly reduced free fatty acid content in the SCCM from M. leprae- and BCG-PGL-1-infected Schwann cells and, hence, preventing neuronal death. Overall, these findings provide novel evidence that both M. leprae and PGL-1, induce a toxic Schwann cell phenotype, by modifying the host lipid metabolism, resulting in profound implications for neuronal loss. We consider this metabolic rewiring a new molecular mechanism to be the basis of leprosy neuropathy.


Asunto(s)
Lepra , Mycobacterium leprae , Humanos , Animales , Ratones , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucolípidos/metabolismo , Vacuna BCG/metabolismo , Lepra/microbiología , Células de Schwann/metabolismo
2.
Nutr Metab (Lond) ; 19(1): 61, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068578

RESUMEN

Adipose tissues are dynamic tissues that play crucial physiological roles in maintaining health and homeostasis. Although white adipose tissue and brown adipose tissue are currently considered key endocrine organs, they differ functionally and morphologically. The existence of the beige or brite adipocytes, cells displaying intermediary characteristics between white and brown adipocytes, illustrates the plastic nature of the adipose tissue. These cells are generated through white adipose tissue browning, a process associated with augmented non-shivering thermogenesis and metabolic capacity. This process involves the upregulation of the uncoupling protein 1, a molecule that uncouples the respiratory chain from Adenosine triphosphate synthesis, producing heat. ß-3 adrenergic receptor system is one important mediator of white adipose tissue browning, during cold exposure. Surprisingly, hyperthermia may also induce beige activation and white adipose tissue beiging. Physical exercising copes with increased levels of specific molecules, including Beta-Aminoisobutyric acid, irisin, and Fibroblast growth factor 21 (FGF21), which induce adipose tissue browning. FGF21 is a stress-responsive hormone that interacts with beta-klotho. The central roles played by hormones in the browning process highlight the relevance of the individual lifestyle, including circadian rhythm and diet. Circadian rhythm involves the sleep-wake cycle and is regulated by melatonin, a hormone associated with UCP1 level upregulation. In contrast to the pro-inflammatory and adipose tissue disrupting effects of the western diet, specific food items, including capsaicin and n-3 polyunsaturated fatty acids, and dietary interventions such as calorie restriction and intermittent fasting, favor white adipose tissue browning and metabolic efficiency. The intestinal microbiome has also been pictured as a key factor in regulating white tissue browning, as it modulates bile acid levels, important molecules for the thermogenic program activation. During embryogenesis, in which adipose tissue formation is affected by Bone morphogenetic proteins that regulate gene expression, the stimuli herein discussed influence an orchestra of gene expression regulators, including a plethora of transcription factors, and chromatin remodeling enzymes, and non-coding RNAs. Considering the detrimental effects of adipose tissue browning and the disparities between adipose tissue characteristics in mice and humans, further efforts will benefit a better understanding of adipose tissue plasticity biology and its applicability to managing the overwhelming burden of several chronic diseases.

3.
Electrophoresis ; 40(21): 2873-2876, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31442316

RESUMEN

Well-defined estimates of mutation rates in highly polymorphic tetranucleotide STR loci are a prerequisite for human identification in genetics laboratory routines useful for civil and criminal investigations. Studying 15 autosomal STR loci of forensic interest (CSF1PO, D2S1338, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D19S433, D21S11, FGA, TH01, TPOX, and vWA), we detected 193 slippage mutations (189 one-step and four two-step mutations) in 148 875 parent-child allelic transfers from 5171 paternity cases with true biological relationship (15 096 individuals; 4754 trios and 417 duos; 9925 meiosis) from the state of São Paulo, a very representative population of Brazil. The overall mutation rate was 1.3 × 10-3 and the highest rates were observed at loci vWA (2.8 × 10-3 ), FGA and D18S51 (2.7 × 10-3 for both), while loci TH01 and TPOX did not present any mutations. The mean slippage mutation rate of paternal origin (1.8 × 10-3 ) was six times higher than that observed for maternal origin (0.3 × 10-3 ).


Asunto(s)
Genética Forense/métodos , Repeticiones de Microsatélite/genética , Tasa de Mutación , Paternidad , Brasil , Femenino , Humanos , Masculino , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...