Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(5)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239072

RESUMEN

The failure of endodontic treatment is frequently associated with the presence of remaining microorganisms, mainly due to the difficulty of eliminating the biofilm and the limitation of conventional irrigation solutions. Non-thermal atmospheric pressure plasma (NTPP) has been suggested for many applications in the medical field and can be applied directly to biological surfaces or indirectly through activated liquids. This literature review aims to evaluate the potential of NTPP application in Endodontics. A search in the databases Lilacs, Pubmed, and Ebsco was performed. Seventeen manuscripts published between 2007 and 2022 that followed our established inclusion criteria were found. The selected manuscripts evaluated the use of NTPP regarding its antimicrobial activity, in the direct exposure and indirect method, i.e., plasma-activated liquid. Of these, 15 used direct exposure. Different parameters, such as working gas and distance from the apparatus to the substrate, were evaluated in vitro and ex vivo. NTPP showed a disinfection property against important endodontic microorganisms, mainly Enterococcus faecalis and Candida albicans. The antimicrobial potential was dependent on plasma exposure time, with the highest antimicrobial effects over eight minutes of exposure. Interestingly, the association of NTPP and conventional antimicrobial solutions, in general, was shown to be more effective than both treatments separately. This association showed antimicrobial results with a short plasma exposure time, what could be interesting in clinical practice. However, considering the lack of standardization of the direct exposure parameters and few studies about plasma-activated liquids, more studies in the area for endodontic purposes are still required.

2.
Polymers (Basel) ; 14(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36297884

RESUMEN

Soft reliner and glaze are materials used over full or partial dental prosthesis to prevent excessive pressure on the supporting tissues. They are also indicated as supportive treatment for dental stomatitis, especially when modified by the addition of medications. The objective of the work was to evaluate the antimicrobial effect of silver-coated silica nanoparticles in a glaze and a soft reliner. The nanoparticles were synthesized, characterized, and tested by minimum inhibitory concentration (MIC) for C. albicans SC5314. Then, the nanoparticles were incorporated to a glaze and a soft reliner, which were called nanocomposites. Then, the nanocomposites were divided into six groups (n = 12): CG: glaze/reliner; CR: reliner; G1: glaze + 1% nanoparticles/reliner; G2: glaze + 2.5% nanoparticles/reliner; R1: reliner + 1%; R2: reliner + 2.5%. The nanocomposites were characterized by a goniometer and by a scanning electron microscope. The antibiofilm test was performed against C. albicans SC5314. According to the MIC results, the non-functionalized nanoparticles reduced fungal growth at 1000 µg/mL and the functionalized nanoparticles at 2000 µg/mL. The functionalized nanoparticle had a superior dispersion being selected for the antibiofilm test. There was a reduction of 64% in CFU/specimen count for the glaze, not statistically significant (p = 0.244). For the soft reliner, there was an increase in CFU/specimen with the presence of nanoparticles, still not statistically significant (p = 0.264). In conclusion, it is necessary to conduct new studies to increase the release of silver, thus improving nanoparticles' antifungal potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...