Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(11): e0277396, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36395271

RESUMEN

Magnetic nanoparticles (MNps) have become powerful tools for multiple biomedical applications such as hyperthermia drivers, magnetic resonance imaging (MRI) vectors, as well as drug-delivery systems. However, their toxic effects on human health have not yet been fully elucidated, especially in view of their great diversity of surface modifications and functionalizations. Citrate-coating of MNps often results in increased hydrophilicity, which may positively impact their performance as drug-delivery systems. Nonetheless, the consequences on the intrinsic toxicity of such MNps are unpredictable. Herein, novel magnetite (Fe3O4) nanoparticles covered with citrate were synthesized and their potential intrinsic acute toxic effects were investigated using in vitro and in vivo models. The proposed synthetic pathway turned out to be simple, quick, inexpensive, and reproducible. Concerning toxicity risk assessment, these citrate-coated iron oxide nanoparticles (IONps) did not affect the in vitro viability of different cell lines (HaCaT and HepG2). Moreover, the in vivo acute dose assay (OECD test guideline #425) showed no alterations in clinical parameters, relevant biochemical variables, or morphological aspects of vital organs (such as brain, liver, lung and kidney). Iron concentrations were slightly increased in the liver, as shown by Graphite Furnace Atomic Absorption Spectrometry and Perls Prussian Blue Staining assays, but this finding was considered non-adverse, given the absence of accompanying functional/clinical repercussions. In conclusion, this study reports on the development of a simple, fast and reproducible method to obtain citrate-coated IONps with promising safety features, which may be used as a drug nanodelivery system in the short run. (263 words).


Asunto(s)
Nanopartículas de Magnetita , Humanos , Nanopartículas de Magnetita/toxicidad , Nanopartículas de Magnetita/química , Ácido Cítrico , Compuestos Férricos/toxicidad , Compuestos Férricos/química , Citratos , Imagen por Resonancia Magnética , Óxido Ferrosoférrico
2.
Nanotoxicology ; 13(3): 326-338, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30477371

RESUMEN

The increasing use of silver nanoparticles (AgNPs) in consumer products raises the risk of human toxicity. Currently, there are no therapeutic options or established treatment protocols in cases of AgNPs intoxication. We demonstrated previously that thiol antioxidants compounds can reverse the cytotoxicity induced by AgNPs in Huh-7 hepatocarcinoma cells. Here, we investigated the use of N-acetylcysteine (NAC) against the systemic toxic effects of AgNPs (79.3 nm) in rats. Biochemical, histopathological, hematological, and oxidative parameters showed that a single intravenous injection of AgNPs (5 mg/kg b.w.) induced deleterious effects such as hepatotoxicity, potentially as a result of AgNPs accumulation in the liver. Treatment with a single intraperitoneal injection of NAC (1 g/kg b.w.) one hour after AgNPs exposure significantly attenuated all toxic effects evaluated and altered the bioaccumulation and release patterns of AgNPs in rats. The findings show that NAC may be a promising candidate for clinical management of AgNPs intoxication.


Asunto(s)
Acetilcisteína/farmacología , Antioxidantes/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Hígado/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Animales , Humanos , Inyecciones Intraperitoneales , Inyecciones Intravenosas , Masculino , Nanopartículas del Metal/química , Ratas , Plata/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA