Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 414(1): 545-550, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34263346

RESUMEN

In this work, we demonstrate for the first time the design and fabrication of microchip electrophoresis devices containing cross-shaped channels and spiral electrodes around the separation channel for microchip electrophoresis and capacitively coupled contactless conductivity detection. The whole device was prepared in a digital light processing-based 3D printer in poly(ethylene glycol) diacrylate resin. Outstanding X-Y resolution of the customized 3D printer ensured the fabrication of 40-µm cross section channels. The spiral channels were filled with melted gallium to form conductive electrodes around the separation channel. We demonstrate the applicability of the device on the separation of sodium, potassium, and lithium cations by microchip electrophoresis. Graphical abstract.

2.
Talanta ; 204: 353-358, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31357304

RESUMEN

Arginine (ARG), ascorbic acid (ASC) and aspartic acid (ASP) are very popular and widely consumed active ingredients used for fatigue treatment or improvement of physical performance. For this reason, these compounds are usually available in the same pharmaceutical formulation. In the current paper, we describe for the first-time methods for simultaneous determination of ARG, ASC and ASP using capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) and with UV spectrophotometric detection (CE-UV). The proposed methods are simple, rapid (78 and 23 injections h-1, respectively) and have low environmental impact (minimal waste generation). The separation by CE-C4D was achieved with a background electrolyte (BGE) composed by 20 mmol L-1 N-tris(hydroxymethyl)- methyl]-3-aminopropanesulfonic acid (TAPS) and 10 mmol L-1 of NaOH (pH 8.7). The limits of detection (LOD) were 0.01, 0.02 and 0.04 mmol L-1 for ARG, ASC and ASP, respectively. The proposed CE-UV method was optimized with a BGE composed by 10 mmol L-1 sodium tetraborate (pH 9.4). The limits of detection (LOD) were 0.03, 0.02 and 0.04 mmol L-1 for ARG, ASC and ASP, respectively. No statistically significant differences were observed (95% confidence level) between the results obtained by the developed CE methods and reference procedures (HPLC for ARG, iodometry for ASC and, acid-base titration for ASP).

3.
Electrophoresis ; 40(2): 322-329, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30246879

RESUMEN

We present an on-line, single step coupling between liquid-liquid extraction and capillary electrophoresis with capacitively coupled contactless conductivity detection, which allows an efficient analysis of complex food matrices with high sodium content. The sodium depletion was demonstrated using an aqueous two-phase system. The aqueous two-phase system enables the electrically driven extraction of the target compounds. The sample was prepared in Dextran-rich phase (8% w/v 500 kDa Dextran, DEX). The background electrolyte (acetic acid 5.0 mol/L) contained 6% w/v of 6 kDa PEG. As proof of applicability, we employed the developed method for glutamic acid quantification on soy sauces. The peak area of glutamic acid presents no significant difference (α = 0.05), while the peak area of the sodium presented a reduction of 11.7 ± 0.2 and 19 ± 3% for premium and low-cost soy sauce samples analyzed. The glutamic acid concentration for premium soy sauce sample was 2.7 ± 0.8 and 4.8 ± 0.4 g/L, and for low-cost soy sauce sample, the concentration was 9.9 ± 0.9 g/L, which agreed with those obtained by other analytical techniques.


Asunto(s)
Electroforesis Capilar/métodos , Ácido Glutámico/análisis , Alimentos de Soja/análisis , Dextranos , Conductividad Eléctrica , Ácido Glutámico/química , Ácido Glutámico/aislamiento & purificación
4.
Anal Bioanal Chem ; 407(23): 7003-12, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26159570

RESUMEN

Superoxide, a naturally produced reactive oxygen species (ROS) in the human body, is involved in many pathological and physiological signaling processes. However, if superoxide formation is left unregulated, overproduction can lead to oxidative damage to important biomolecules, such as DNA, lipids, and proteins. Superoxide can also lead to the formation of peroxynitrite, an extremely hazardous substance, through its reaction with endogenously produced nitric oxide. Despite its importance, quantitative information regarding superoxide production is difficult to obtain due to its high reactivity and low concentrations in vivo. MitoHE, a fluorescent probe that specifically reacts with superoxide, was used in conjunction with microchip electrophoresis (ME) and laser-induced fluorescence (LIF) detection to investigate changes in superoxide production by RAW 264.7 macrophage cells following stimulation with phorbol 12-myristate 13-acetate (PMA). Stimulation was performed in the presence and absence of the superoxide dismutase (SOD) inhibitors, diethyldithiocarbamate (DDC) and 2-metoxyestradiol (2-ME). The addition of these inhibitors resulted in an increase in the amount of superoxide specific product (2-OH-MitoE(+)) from 0.08 ± 0.01 fmol (0.17 ± 0.03 mM) in native cells to 1.26 ± 0.06 fmol (2.5 ± 0.1 mM) after PMA treatment. This corresponds to an approximately 15-fold increase in intracellular concentration per cell. Furthermore, the addition of 3-morpholino-sydnonimine (SIN-1) to the cells during incubation resulted in the production of 0.061 ± 0.006 fmol (0.12 ± 0.01 mM) of 2-OH-MitoE(+) per cell on average. These results demonstrate that indirect superoxide detection coupled with the use of SOD inhibitors and a separation method is a viable method to discriminate the 2-OH-MitoE(+) signal from possible interferences.


Asunto(s)
Técnicas Biosensibles/instrumentación , Electroforesis por Microchip/instrumentación , Rayos Láser , Microscopía Fluorescente/instrumentación , Espectrometría de Fluorescencia/instrumentación , Superóxidos/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Diseño de Equipo , Análisis de Falla de Equipo , Colorantes Fluorescentes/síntesis química , Tasa de Depuración Metabólica/efectos de los fármacos , Tasa de Depuración Metabólica/fisiología , Ratones , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Integración de Sistemas , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacología
5.
Electrophoresis ; 36(3): 441-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25256669

RESUMEN

In-channel amperometric detection combined with dual-channel microchip electrophoresis is evaluated using a two-electrode isolated potentiostat for reverse polarity separations. The device consists of two separate channels with the working and reference electrodes placed at identical positions relative to the end of the channel, enabling noise subtraction. In previous reports of this configuration, normal polarity and a three-electrode detection system were used. In the two-electrode detection system described here, the electrode in the reference channel acts as both the counter and reference. The effect of electrode placement in the channels on noise and detector response was investigated using nitrite, tyrosine, and hydrogen peroxide as model compounds. The effects of electrode material and size and type of reference electrode on noise and the potential shift of hydrodynamic voltammograms for the model compounds were determined. In addition, the performance of two- and three-electrode configurations using Pt and Ag/AgCl reference electrodes was compared. Although the signal was attenuated with the Pt reference, the noise was also significantly reduced. It was found that lower LOD were obtained for all three compounds with the dual-channel configuration compared to single-channel, in-channel detection. The dual-channel method was then used for the detection of nitrite in a dermal microdialysis sample obtained from a sheep following nitroglycerin administration.


Asunto(s)
Técnicas Electroquímicas/instrumentación , Electroforesis por Microchip/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Electroforesis por Microchip/métodos , Diseño de Equipo , Límite de Detección , Microdiálisis , Nitritos
6.
Electrophoresis ; 24(12-13): 2138-2143, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12858386

RESUMEN

The separation and detection of common mono- and disaccharides by capillary electrophoresis (CE) with contactless conductivity detection (CCD) is presented. At high values of pH, the sugars are converted to anionic species that can be separated by CE and indirectly detected by CCD. The main anionic species present in the running electrolytes are hydroxide and phosphate, which have greater mobility than the ionized sugars, and, thus, the indirect detection is possible. The method was applied to analysis of glucose, fructose, and sucrose in soft drinks, isotonic beverages, fruit juice, and sugarcane spirits. Galactose was used as internal standard in all cases. Plate numbers range from ca. 70,700 to 168,200 and the limits of detection from 13 to 31 microM.


Asunto(s)
Carbohidratos/análisis , Electroquímica/métodos , Electroforesis Capilar/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...