Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Electrophoresis ; 45(5-6): 392-399, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38072648

RESUMEN

An analytical method based on capillary electrophoresis (CE) using capacitively coupled contactless conductivity detection (C4 D) was developed and validated for fast, straightforward, and reliable determination of lactate in artificial and human sweat samples. The background electrolyte was composed of equimolar concentrations (10 mmol/L) of 2-(N-morpholino)ethanesulfonic acid and histidine, with 0.2 mmol/L of cetyltrimethylammonium bromide as electroosmotic flow inverter. The limit of detection and quantification were 3.1 and 10.3 µmol/L, respectively. Recoveries in the 97 to 118% range were obtained using sweat samples spiked with lactate at three concentration levels, indicating an acceptable accuracy. The intraday and interday precisions were 1.49 and 7.08%, respectively. The proposed CE-C4 D method can be a starting point for monitoring lactate concentrations in sweat samples for diagnostics, physiological studies, and sports performance assessment applications.


Asunto(s)
Ácidos Alcanesulfónicos , Ácido Láctico , Morfolinas , Sudor , Humanos , Cetrimonio , Electroforesis Capilar/métodos , Conductividad Eléctrica
2.
Electrophoresis ; 40(5): 693-698, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30597587

RESUMEN

This study reports the separation of fructose, galactose, glucose, lactose and sucrose on glass microchip electrophoresis (ME) devices using a microfluidic platform adapted with external reservoirs for controlling the electrolysis phenomenon. The connections between external reservoirs and microfluidic platform were performed by saline bridges created using silicone tubing filled with BGE. The separation conditions were optimized and the best results were achieved using a BGE containing 75 mmol/L NaOH and 15 mmol/L trisodium phosphate. Electrophoretic separations were monitored using a capacitively coupled contactless conductivity detection system. The controlled electrolysis has successfully allowed the application of a higher voltage on the separation channel promoting the baseline separation of five carbohydrates within 180 s with great run-to-run repeatability (RSD < 1%). The achieved efficiencies ranged from 45 000 ± 6000 to 70 000 ± 3000 plates/m demonstrating a performance better than ME devices without controlled electrolysis. The proposed system offered good linearity from 1 to 10 mmol/L and LODs between 150 and 740 µmol/L. The use of external tubes for controlling the electrolysis phenomenon on ME devices has solved common problems associated to run-to-run repeatability and analytical reliability required for routine and quantitative analysis.


Asunto(s)
Electroforesis por Microchip/métodos , Azúcares/análisis , Azúcares/aislamiento & purificación , Conductividad Eléctrica , Concentración de Iones de Hidrógeno , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados , Azúcares/química
3.
Analyst ; 142(2): 375-379, 2017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-27996066

RESUMEN

Dielectrophoresis (DEP) is the electrokinetic movement of non-charged particles when they are subjected to a non-uniform electric field. This is a growing area of research, which can be used for trapping, concentrating and separating different particles. Some work has been reported with the intention of trapping metal particles to optimize the surface enhanced Raman spectroscopy (SERS) effect. In this paper, we use DEP with insulating structures (iDEP) to generate a non-uniform electric field for trapping gold nanoparticles (AuNP). The system was coupled to a Raman spectrometer for the detection of Crystal Violet by utilizing the SERS effect.

4.
Talanta ; 76(2): 271-5, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18585276

RESUMEN

Compared to other volatile carbonylic compounds present in outdoor air, formaldehyde (CH(2)O) is the most toxic, deserving more attention in terms of indoor and outdoor air quality legislation and control. The analytical determination of CH(2)O in air still presents challenges due to the low-level concentration (in the sub-ppb range) and its variation with sampling site and time. Of the many available analytical methods for carbonylic compounds, the most widespread one is the time consuming collection in cartridges impregnated with 2,4-dinitrophenylhydrazine followed by the analysis of the formed hydrazones by HPLC. The present work proposes the use of polypropylene hollow porous capillary fibers to achieve efficient CH(2)O collection. The Oxyphan fiber (designed for blood oxygenation) was chosen for this purpose because it presents good mechanical resistance, high density of very fine pores and high ratio of collection area to volume of the acceptor fluid in the tube, all favorable for the development of air sampling apparatus. The collector device consists of a Teflon pipe inside of which a bundle of polypropylene microporous capillary membranes was introduced. While the acceptor passes at a low flow rate through the capillaries, the sampled air circulates around the fibers, impelled by a low flow membrane pump (of the type used for aquariums ventilation). The coupling of this sampling technique with the selective and quantitative determination of CH(2)O, in the form of hydroxymethanesulfonate (HMS) after derivatization with HSO(3)(-), by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4)D) enabled the development of a complete analytical protocol for the CH(2)O evaluation in air.


Asunto(s)
Contaminantes Atmosféricos/análisis , Conductometría/métodos , Electroforesis Capilar/métodos , Formaldehído/análisis , Diseño de Equipo , Polipropilenos
5.
Electrophoresis ; 25(21-22): 3832-9, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15565680

RESUMEN

We describe the development of an electrophoresis microchip fabricated by a direct-printing process, based on lamination of printed polyester films with end-channel amperometric detection. The channel structures are defined by polyester (base and cover) and by a toner layer (walls). The polyester-toner devices presented an electroosmotic flow (EOF) magnitude of approximately 10(-5) cm2 V(-1) s(-1), which is generated by a polymeric mixture of the toner and polyester composition. The microelectrodes used for detection were produced combining this laser-printer technology to compact discs. The performance of this device was evaluated by amperometric detection of iodide and ascorbate. The detection limits found were 500 nmol.L(-1) (135 amol) and 1.8 micromol.L(-1) (486 amol) for iodide and ascorbate, respectively.


Asunto(s)
Electroforesis por Microchip/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Ácido Ascórbico/análisis , Diseño de Equipo , Yoduros/análisis , Materiales Manufacturados , Microelectrodos , Poliésteres
6.
J Chromatogr A ; 942(1-2): 249-58, 2002 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-11826873

RESUMEN

A new prototype of contactless conductivity detector, smaller and easier to operate than the former version, is described. For a fused-silica capillary with 142-microm wall thickness and voltages up to 25 kV, it can be placed at the low- or high-voltage end of the column. This feature allowed implementation of an apparatus with sample introduction at the grounded end of the column. The input signal is an important parameter for determining the signal-to-noise ratio (S/N) of the detection system. An optimization procedure of its amplitude and frequency is proposed. Although the SIN must be determined by introduction of actual samples, the operating conditions can be optimized merely by changing the signal parameters and by using a mathematical procedure. Thus, an easy and fast optimization routine can be carried out. Mathematical and instrumental backgrounds are discussed, and experimental support of the technique's effectiveness is presented.


Asunto(s)
Electroquímica/métodos , Electroforesis Capilar/métodos , Electroquímica/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...